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Abstract—-A lhermodynamig) mqgf_:l, based on the regular solution approximation is presented and a formalism,
suitable for phases with an fbitiaty sumber of sublattices, is developed. A new concept, the component array, is
infroduced in order to simplify the analytical expressions for the integral Gibbé energy. The definition of the
component array allows 2 straightforward procedure for the derivation of expressions describing the Gibbs energy
for any kind of phase. Expressions for the partial Gibbs energy are derived. The implementation of the model on a

computer is discussed. :

1. INTRODUCTION

The . term regular solution was introduced by
Hildebrand[1] to describe mixtures, whose behaviour
show some ° experimental  regularities.  Later
Guggenheim[2] proposed the term “strictly-regular-solu-
tions™ to cover mixtures that show an ideal entropy of
mixing but have a non-zero interchange energy. The

enthalpy of mixing was obtained by counting the number .

of nearest neighbours of different kinds. As long as the
various species, -atoms or molecules, are sufficiently
similar in size, shape, electronegativity etc., it may be a
good approximation 10 assume random mixing. 1f the

species are more different, they will not mix randomly

and as a consequence the solution will not have an ideal

_ entropy of mixing. If they are sufficiently different, they

may even occupy different soblattices and only those
which are similar go into the same sublattice. It may then
be possible to use a regular-solition model which
assumes random mixing within each sublattice. Recently,

Hillert and Staffanssonf3] proposed a mode! that des--
“cribes mixing in two different sublattices. In the first

version the model covered the case with 4 components
that mixed pair-wise in two sublatlices. An extended

“version, capable of treating an arbitrary number of

components on both sublattices, was later presented by
Harvig|4). More recently, Rillert and Waldensttom{5]
introduced concentration dependent interaction para-

- meters. In the future there may be a-need for further

extensions, ¢.g. by the introduction of more sublattices

and higher-order interaction parameters. The mathema-
‘tical description of the model grows more complex as

more ‘components and more swblattices are added.
However, very complex systems can be handied by the
application of computer technigues. As such technigues

~ are now being developed for the purpose of celculating

phase equilibria, it is interesting to generalize the regular
sblﬁlion"modcl 1o an arbitrary number of sublattices and
components, This will be done in the present report. The
result will be presented in such a form that it can be

applied to any special case without further mathematical
derivations. Furthermore, a fully auntomatic, computer-
operated procedure will be described which can handie
all such cases. . :

2. THE MODEL
2.1 Definition of site fractions
The mole fractions in 2 phase are generaliy defined by
the following relation :

xr—‘n.-/g‘ n:=n;!n.‘j M

where n; and n; are the number of moles of component §
and | respectively and n is the total number of moles in

tise phase. The number of components is ¢. Tt is con- .

‘venient to introduce 2 similar composition parameter for
each sublattice if the phase is composed of two or more
sublattices and to inciude the number of moles of vacani
sites, fv,, in the summation '

¥ = n / (n bat 2“, nt ( o

The superscript -s denofes the sublattice under con-
sideration. y;° thus represents the site fraction of com-

ponent i on sublattice s. One can then define the site -

fraction of vacant sifes and obtain the relation

Yoa=1-3 3t )

It is often convenient to regard the vacant sites in a
sublattice as a component and include them in the sum-
mation for the sublattice in eqn (2) but not in the sum-
mation for the whole phase in egn (1) We also introduce
a* as the number of sites on the sublattice s per mole of
formula units of the phase.

The site fractions can be arranged in a | X ¢ matrix if
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The assumption of random muung on each sublatuce

yxe]ds an expression for the ideal molar entropy of
mixing in the phase. It can be wntte_n in tl_le foIIowmg_ o

way -

s-*“'ue Ea Ey:lnyi e

Scmet:mes it'is possible to express aII the y values m'
terms of the x values and thus to express the ideal

entropy as a function of the x parameters. However,

such an expression is not always possible to formu!ate -

and when posmb!e |t |s always more comphcated

23 The slate of reference for the G:bbs energy

We need to define a frame of reference” for the Gibbs" .

" energy of a solution which contains two or more sublat-
tices. This problem was considered by’ H:llert and.

Staffansson[3]. For the simple case where there are two .

sublattices and two components on each one, A, B and
C, D respectively, they suggested the followmg expres-

sion

: G = J’AJ’C GA.lc.2+Ya)’c Gs.lr .
5 "+ )’B)’D GB,ID31

formula units o? the pure compound A,,C.; and the other
quantities have an equivalent definition.’

An alternative notation of these quantities would be:
°Gif where i is the component on the s sublattice and j .
lhe component on the ¢ sublattice. More sublattices can
easily be added. When eqn (7} is generalized, the prin-
ciple suggested by Hillert and Staffansson makes it
necessary to consider every possible compound and

multiply its Gibbs energy by the fraction of that com-
pound, t.e. the product of the corresponding site frac-

tions, ¢.g. yify in the case of two sublattices, . |

As another alternative the information con:amed in lhc

Each row represents a sublattice and each 'colurnn:a'_
component. Since most components do not enter into all

}; (l yv.) s&f s, “

superscript and subscript can be represented by a com- -

ponent arcay I, which defines one component for each
sublattice. Using this notation one can write eqn (7) in
the fo!!owmg generahzed form ‘

EP,(Y) G, e

°Gy represents' the"Gibbs energy of the compound
defined by J which may of course depend on tem-

‘perature and pressure, and Py(Y) represents the cor-. . .
_ respon_chng product of site fractions from the ¥ matrix.

_The frame of reference defined by eqn (8) is composed

" of up to ¢ terms if there are | sublattices and ¢ com- - .
. ponents and this wommber of 16 -

'_ terms for the case of 4 components and 2 sublattices.

: However, only 4 terms were included in egn (7) because

. A and B only entered the first sublattice and € and D
the second. Four 'y values were thus zero and a Iarge'

v number of hypothetlca! compounds could be onutted

o 4 The excess G:bbs energy ‘ : : _
- It is now possible to define an excess anbs energy,

G,,,, of a solut:on from the following expresslon S
. " LTy R

EG. is malnly composed of_the_. lnteraction energies .
between different components in the same sublattice. - :
" The interactions between neighbouring atoms in different - -
sublattices are ‘essentially described by the G, terms.
- Accordmg to “the original regular solution model the -,
contribution _ from | the pair-wise . interaction . betwcea

.., atoms of d:ﬁ'erent components can be eJtPTessed by the :

where K "represents “the in!eraction”energies By
generahzmg this model to phases with two ‘or. more

"'.'.'By definition K% -0, The values of the. K quantities

: %4 should: normally depend upon what components are . -
_ wherc G,., c. is the Glbbs energy of one mole of a

present in the other siblattices and Hillert and Staffans-

~ son suggested the followmg eXpressmn for the case of

'two sublatuces, o

where ‘s denotes one sublamce and t lhe other The
superscript sst gives the: sublattices where the com-
ponents i j and k are located. Each such L quantity can
be identified by giving a component array-L which tells
_that the components / and k are in the sublattices s and
1, respectively, and in  addition giving the information .
that there is another component j in the s sublattice. The
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The pamal Gibbs energ'y wnh rcspect 10 a componcm array is
definedas - . . . - .

-

G;d.- (;go)r P-a,o :', (A3_:=-.-

We now derive some useful quanuues ‘that will be used 0.
formulate eqn (A3) in terms of derivatives of G,. First we’,

exprcss !he numbcr of mo]es of component i on sub]amc:e 5.

This summation is taken over al[ !0 with i in sublamce 5 Of "

course, the following relahon holds between the quantmes for atl
th: componcnts ) . -

ERRCY

From (A6) we find

-

a _' We now apply (AIO) 0n the cxprcss:on oi’
- (18) First we define "'the parhal operal "

' (M)---

Wc ﬁrst examine how D,o w:ll operate on ihe sum of interaction
terms of an arbitrary order Z. .

Dmg PreV)Lez = g [Pu( mmz {szmsxz.

() s (1)

_ - : . (A13) .
The quanuty 8 \\as deﬁned in connectmn v.'lth eqn (22) We -
have used 5 . .
i 3 szm amP "Z‘Y’ W

Notlce I.hat rf sz is compos:lmn dependcnl it can only dcpend
on the components given by KZ If we assume that Ly, is -
composition independent, then eqn (A13) can be simplified by the . -

observation that the Jast term will run through all components §

.in alf sublattices. As the component array contains /+Z com- -
. ponents, this term will be non zero I+Z nmes and its value will
7 be Pxa{Y)Lgz each time.

SAG

As before.l is the number bf subiathces Thus

D}og Pu(Y}sz § Pu(}')sz*E z sz(l’)ﬁm

: 'x——(r+p)§mzml.xz

prztm”{x; L2 '_—um]

By using f ¥

- SIQ ="'R2ﬂ lny;, -

L By comb:mng (A13) and (AI?) thc gencral expresswn for the N
- partial Gibbs energy .can be obtained. For the simpler case
. composition mdependent :nteractmn parametcrs we combine
(AIS)and (Al‘?)to : b :

G"om:%I,.’u(y)BG“b(I-i‘2 S ) |
HRTZ e ',M'-;.*Z‘,EP:A}?L::( 13l um)

(AIS) ’

: (Am -

g Tlns smphﬁcalmn can bc apphcd 0 any case wherc sz is-
composmon mdcpcndcm An 1mporlanl case’is Z=0where Lyz -
is replaced by -°Go which-is compesition. mdepcndcnl by -
’ Adeﬁnmon We now let D,,(, operate on mc |dczl cntropy of mlxmg f,

T Rt F
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following notation could be used Isj. However, this
notafion is shghﬂy arbitrary since one could just as well
include the j component in the component array instead
of 7 and add the further information that there is another
component § on the s sublattice. This can be avoided by
simply generalizing the component array by allowing
more than one component 10 be gwen for eaeh subiat-

that in one sublattice contains two components but only

one in éach of the remaining sublattices, as a component . -~
array of the first order and it will be denoted by J1. The
type -of component array that was infroduced when - -

defining the reference state could then be denoted JO and
be referred o as-a component array of the zeroth order
Usmg Ihxs notanon we muld wme eqn (12) as ..

*-’G ‘};p,.m o _'_“;'-""-_'(13)'1'

where the summalton is laken over aﬁ d:ﬁ'erent I 1. It is

easy to extend to higher order. Ainteraction by simply c
introducing higher order component arrdys IZ. However, .
in -order to. make the .definition of the. mterachonv,f _
parameters unambiguous, we ‘mustimpose the Testriction © -1 2
thata componenl array must not contain any component "
_ more . than once 'in - ‘each sublattice. In this way we
: au!omatrcai]y exclude parameiers snch as Lf.k" 'in eqn '

(). -

The excess Glbbs energy can then be wnt:en ,

s The interaction paramelers L,; may of course depend on i
temperature and pressure, As:an’ example of ‘this for- "
" malism one may consider & term vsed by Blander[ﬁ} for ¢
‘the interaction ‘between all four components in a '

. reciprocal ‘system, 1.e. two- components A and B on
. sublaihce 1 and C andD on sublamce 2

whlch is mciuded in eqn (14) for zZ= 2 Nouce thal 2l
"component’ aray . is written with a’ ‘comma “ between
- compopents in dlﬁerenl sublattices and a colon v be-

{ween components in the’ same sub!attwe

the number of parameters may be large enough even if
the L;» parameiers are composition independent. As an
example, consider an A-B system first havmg only one
sublattice and then two with A and B mixing randomly

on ¢ach one bui not betwecn them The Gibbs energy for CL

- F

-
e

.EG ; E szz(Y) L;z (14)7{ -

“the binary A-—B so]uti'on with on!y one snb]attiee is

G = ya GA-H GB+RT{}A!n}A+)B In ygl

+ya¥ela:s.  (162)

For the case with two sublattices with a” and a2 sites

respectwe!) ihe model gwes

.G‘-)A YAl GA A"‘)A .Vs nGA a“'}’a YA GBA

o +y IYaszB B

+RT{a"(ya} In y,.‘ + ¥a Jn ya 9}
-+ 02(3’A2 In )'Az +y5 Inys')}

_;'._"’.VA y8' )’A LA At Ya'ye )’azLA BB
Cyd yA J’.B LAA B+y8 ¥Ya yBLBA B

B "_..+YA }B YA /5 LA BABS S (16b) -

In order fo be able to handle the currently available
data on binary systems, mieracnon parameters may be

" given different kinds of composition dependency The
“most common expressmn for binary systems is

where i and iy are the two oomponents whlch oecupy
- sublattice s _accordmg to the component J1. The number

b is called the'degree' of the parametet *Gy,.
* Any such expression can be incorporated in the model

We can now wnle the anbs energy per mo!e ‘

L “LL,A.;W_——“-

G Epmm °G,.,+R:r§‘,a Ey lnyi

\_
+2 EP;z(Y) sz S )

' 3 m PARTIAL CIEBS vmcv

., PE. ?’”"‘“

e

. For. a phasa vuth severa.l sub!attlces one can deﬁne the -
_following “partial energy mth respect to 2 compnnent

: ,,;"_array o{ zeroth ordcr 10 :

‘As IZ must not contain’ ‘a component more than once e .

. for the same- sub]amce 1he “value of Z is Jimited, A -
binary system with one *sublattice and no vacancies will
thus have just one interaction parameter. Such systems S

“are by far the most commonly investigated (7] and itisa
general experience that 2 single parametei usually is not.
sufficient fo represen( the experimental data. A com-
posmon dependency is often introduced. However, if
more thun one sublattice is used to describe the system,

| Gm—(ﬁ) ;f'_"" @

aﬂju 7.P, nm

where n,o is the numb°r of moles of formu]a umls of I0.
“This quantity is, in contrast to the partial Gibbs energy for
the individual componems, always poss'ble to formulate
exphcrtly >

‘In .the appendix it is shown that ‘the well-known
expression for the calculation of pamal quantmes canbe
generalized as follows
P L s

‘ ‘.'(;,., G+ 2 (ay,

vy

“"Q‘Fe-t ¢ w’tr-.a cfw"

L.

er ;( —yn"-"en 'm)-

<The parhal Gibbs energy walh tespecx to a component i
_1s deﬁned m any textbook as :

N @19) _

) o
;;wfé Ua’cd&
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where i, is the component in sublattice s of the com-.

ponent array H). By applying eqn (18) for 6., the parnal
derivatives are obtained as fol]om

?‘ PIO(H oG;o'i’RT a (l +ll'l )’:')
By -

" 2 E( SJZr ( L +y‘ LJZ) - (22)

CEeEE - _

.‘-

The quantity 85z is a spec:a! form of the Kronecker
delta. 83z is unity if i is one of the components in

sublattice s, of the cornponent array JZ and zero other- |

wise. It is shown in the appendix that in the case of

composition independent interaction parameters we -

obtain by inserting eqn (22) into eqn 21,

Gro= ; P-Jo( Y}°GJ.U(!." H' 2 -ay_jigi) +RT2¢1' In }'i'

4. [.\[?LEME\TATIO\I OF TRE MODEL OoN CO\&P[:TER R

evaluations in_many types of ealeulanons relating to -
problems of chemical equ‘hbnum or kinetics. In orderto ©
simplify such calculations on computer it would be help- *
ful to have a library of subroutines for the evaluation of .
the various thermodynamic quantities involved. In order _
to keep the number of such subroutines at 2 minimum, it .

" is necessary to make such’ subrounnes ‘as general as’

- possible. It was lhus felt that the present thermodynamxc
modei should be programmed in & general way, such that *
the person workirg on an application ‘program could
always use the same subroutine and would only have to

specify the phase by giving the number of components

and sites on each sublattice. Such a program has now

been constructed in the FORTRAN language for 2 Nord--
- 10 m:mcomputer. It can be mOdlﬁCd for usage on ther v

computers.- - =
- Since there may.be 2 need for eafeulalmg various
. quantities from the infegral molar- Gibbs energy G, it

was necessary to structure the data in some special way.:”

The method chosen was mspu-ed by the’ ‘monograph, -
“The Art of Computer Programming™ by Knuth{8].
Some programming languages like PL/I, PASCAL and
SIMULA " are -designed to - handle structural data.-
. However, it turned out to- bé quite. stralght-forward to
implement dynamic storage allocation and list processing -

for the present purpose in FORTRAN. The data was -

structured. in such a way that both G, and partial
derivatives with réspect to fractions can be calculated by

the same subroutine. This is achieved by using the same .

techniques as in programs for symbolic mampu]auons of
formulas, but in the present case the procedure i is taken
one step further and a numerical value rather than a

formula is the ﬁnal result. Another beneﬁt of this tech-

2 3 Hillert M. and Staffanssou L L,

o, Asren] TRITAMACOISE AT, 5

nique is that enly non-zero parameter values need to be
stored which reduces the space required for storage.

As an extra feature the possibility of evaluating the
molar volume and its derivatives ‘was included in the
program, as well as a composition dependent ferro-

_ magnetlc contribution to the Gibbs energy.

- The program has an interactive command monitor
wntl_en as a separate subroutine. With this monitor the

. user can, from his terminal, specify his system and gi\fe
all the- necessary data and also inspect.it and obtain

listings.: There is a spemal Users Guxde for thls'
momtor[9]

- The’ program has been tested in several apphcatlons _
" At present there are two different app]:catlon programs

available for phase diagram’ calculations, one for opti-

‘mizing parameters in the thermodynamic model to.ﬁt
. - experimental tie-lines or activities and one for simulating
" diffusion controlled transformations -in solid or solid-

liquid systems. Some results from the appltcauon pro-
grams have been reported[10, 11]. © '

The expenence has shown that the program has some'

“advantages in-addition to saving time for the person

writing the application program. In particular, it yields

~ safer application programs’ sincethe hlghly structural
" data storage eliminates many ervors. In view of the fact
that the program derives all quantities analytically from -~

the integral qnantmes it is not possible for the user to

- make logical errors in his handling of thermodynamics.
There is a eonsnderable need for thermodynamlc

Among the drawbacks of the program it should be men-
-tioned that.it yields execution times which are un-

- necessary long for very s:mple cases. Furthermore, it uses
‘a rather large part of the primary memory of the Nord-10 -

- minicomputer. It may thus be necessary to segment an

- application program or to use overlay techniques. On }he
- other hand, such drawbacks will grow less and less im- ;-

portant due lo the rapad progress of compuler handware.
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| APPENDIX

Cn!cufanon of pan'mi quantities
anbs energy for n, moler of formula units is _

. GemeG. e

here G, isa funcuon of tempera!urc, pressure and the frac-

tlons of a!] componenls given by the Y matn.x

6= c..(rpn T

,
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defined as

We now -
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express th
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course, the
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and {rom (.

Equatior

where §; i
eqn (A3}

We now
(18). First ¥




