# LECTURE 3







#### Free coherence evolution



### **Refocusing spin echo**



### Decoupling spin echo



#### Simultaneous spin echo













### **INEPT vs. direct excitation**



#### **INEPT** vs. direct excitation:



 $\omega$ 

#### **HSQC Spectroscopy**



















#### Decoupling in direct dimension



 $\Omega_1 \omega_2$ 

#### **Decoupling in direct dimension**



#### Decoupling in direct dimension



# $^{1}$ H, $^{15}$ N HSQC spectrum of a 20 kDa protein



# **Benefits of HSQC**

• High sensitivity for  $^{13}{\rm C}$  or  $^{15}{\rm N}$  (higher by  $(\gamma_1/\gamma_2)^{5/2}$  than by the direct detection

#### • High resolution

Second dimension and less peaks in spectrum (only  $^{13}{\rm C}/^{15}{\rm N}$ -bonded protons and protonated  $^{13}{\rm C}/^{15}{\rm N}$  visible)

• Important structural information

<sup>1</sup>H-<sup>13</sup>C and <sup>1</sup>H-<sup>15</sup>N correlation

(it tells us which proton is attached to which  $^{13}C$  or  $^{15}N$ ).