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Raman scattering provides highly specific and non-destructive
information on molecular vibrations, enabling analysis often not
obtainable from other techniques such as fluorescence,
chromatography and optical microscopy.
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Principles of the Raman effect

SCATTERING of RADIATION
the scattered photon has a different energy than the incident photon

radiant two-photon transition between two stationary states of
molecules whose vibration energies are E, a E,,

caused by interaction with the photon of incident radiation with frequency
Vo >(E;-E)) /h,

accompanied by radiation of scattered photon with energy
hvg=hv,* (E,-E, ),

where hv,, = E, - E,

The scattered photons carry information about the energetic spectrum of the
scattering center as well as the spatial orientation of a particular chemical
bond, (it is like molecular "business card"). However, without special measures,
only a single photon of hundreds of millions to hundreds of billions of incident
hotons is scattered in this way. The Raman scattering cross-section is about

10 30 cm?.
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Light scattering occurs in all directions
around the scattering particle.
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Rayleigh (molecular) scattering

Lord John Rayleigh rightly found that the intensity of the scattered radiation was
directly proportional to the fourth power of the radiation frequency, or inversely
proportional to the same power of its wavelength; light scattering occurs in all
directions around the scattering particle and is even of three kinds: scalar scattering
in which the intensity is uniform in all directions, scattering symmetrical and
antisymmetric, the intensity of which varies in different directions, as well as the
polarization of scattered radiation. At the same time, if a monochromatic light falls
on a particle of frequency v, then the diffuse radiation has the same frequency v, ',
but its intensity is much lower than the intensity of the incident radiation; in this
case we say that the spectrum of scattered radiation consists of a single spectral
line. All the experiments of Rayleigh's contemporaries confirmed this theory.
Neither he nor any of his contemporaries could, however, suspect that there were
at least ten types of light scattering, or that the blue sky was not caused by light
scattering on individual molecules but by so-called atmospheric density fluctuations,
ie random random clusters of molecules contained in an atmosphere that lasts an
extremely short time, that is, only for the duration of the collision of at least three

such molecules.
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Principle of Raman spectrometry 1

» The Raman scattering is based on the radiant two-photon
transition between two stationary vibrational states of a molecule
whose energies are E, and E,, induced by interaction with the
photon of incident radiation at the frequency

» where h is Planck's constant, and is accompanied by the photon
emission of scattered radiation at the frequency V. This scattering
effect can be simply imagined as the simultaneous absorption of the
exciting photon by a molecule as the molecule moves to a virtual

energy level and the emission of a secondary photon, subject to the
condition of energy conservation:

hvg =hv, £ (B - E) (1)

» There are several possibilities of such a transition according to the
position of the virtual energy level in relation to the actual states of
the molecule (eg normal and resonant Raman effect).
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Principle of Raman spectrometry 2

In the classical approximation, for a molecule interacting with radiation,
the dipole moment p is induced in the molecule :

|l 0 -
p=aEcos (2nv,t)+———qE {cos [2n(v,—v,, )] +cos 2n(v, +v,, ) ]|

20

where v, is the frequency of excitation radiation, v,,, is the vibration
frequency, E is the vector of the electric field intensity of the incident
radiation, g are the internal coordinates of the molecule and a is the
polarizability of the molecule (polarisability is the degree of "difficulty”
with which a negative charge is deflected by electric field). The
equation shows that the molecule emits radiation at an unchanged
frequency( v, - Rayleigh scattering —— ) and radiation with
frequencies( vo+ Vv, —— ) a (Vyg—Vy ), which are collectively
called Raman scattering, with the lower frequency ( vy—v,;,)
corresponding to Stokes scattering, while the higher frequency ( v, +
v,,) belongs to anti-Stokes scattering. From the equation it is also
evident that for the formation of the Raman lines is necessary that the
vibratory motion cause change in polarizability, namely that:
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Non-resonance Raman spectra

E, Excited electronic state

......................................................... A /.\ Virtua/energystate
Excitation energy
Vibrational
energy
Y states
IR absorbance A\ WV Eo
Rayleigh  Stokes / Anti-Stokes AE=E,

Scattering Raman Scattering

The magnitude of the frequency shift w, does not depend on the frequency of the
incident radiation. The probability of the Raman effect increases with the fourth
power of the incident radiation frequency and is three orders of magnitude less
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Raman spectrum
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Model Raman spectrum showing the intensity of light
scattered with frequency v'

Ias/Is = {(vo + Av)/(vo — Av)}'(g2/81) exp(~hAv/KT)
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Raman spectrum of substances present in

the atmosphere
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Raman resonance spectra
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Figure 1: Comparison of normal, pre- resonance and resonance
Raman scattering,

Resonance Raman scattering occurs when the frequency of radiation incident on the
scattering particle matches or approaches the frequency of the particle's quantum
transition. Compared to the radiation intensity of non-resonant Raman scattering, the

intensity can be increased by 3 to 6 orders.
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Resonance Raman scattering

» virtual level near the electron excited state

» UV resonance Raman spectroscopy - nucleic acids,
proteins

» Visible range - coordination compounds, organic dyes,
hemoproteins

» NIR - "pre-resonance”? - low energy electron transitions

» Excitation profiles - dependence of Raman spectra
(selected bands) on excitation wavelength
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Raman resonance spectrometry

» Enhancement factor|0%—1 04

» Practical aspects

For solutions - the question of choice of
concentration and position of the excitation
beam

Self-absorption

Fluorescence

Choice of beam geometry, focus
Concentration profile
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Instrumentation for Raman spectrometry

RECORDER
SAMPLE
LASER CELL
Ter=a) - T
AMPLIFIER

|

MONOCHROMATOR p— PHOTODETECTOR

Instrumentation for laser Raman spectroscopy

Solid, respectively liquid sample is placed in front of the slot of the spectrometer.The
sample is irradiated with a focused laser beam with an output power greater than 100mW,
usually of an ion Ar (A = 514.5 nm - green and 488 nm - blue) or a He-Ne laser (A = 632.8
nm).The Nd:YAG laser with frequency multiplier and laser diodes is often used recently.
The monochromator must have very low diffuse radiation (usually double).The detector is
usually a photomultiplier, respectively. intensified CCD detector.
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Diagram dispersive Raman instruments
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Technological advances in Raman
spectroscopy in the past 20 years

|.FT Raman spectrometry ~ = >

Rhodamine 6G

+ excitation in the NIR region - solves the problem with fluorescence S5 S0
+ high accuracy of wavenumbers
- lower scattering intensity - more difficult to detect

1064 nm

§00 1000 1500 2000 2500 3000

Raman shift  em-

glassy single channel "PMT
carbon Spex 1403
20 minut

SNR ~ 28 <::I 2. Multichannel CCD detectors

+ Significant improvement in signal to noise ratio (SNR)

+ Significant reduction in measurement time
multi channel eep -

Chromex 250
5 sekund
SNR ~ 280

—_

T T T
1100 1300 1500 1700

Raman shift  em (in both cases excitation 514.,5 nm / 50 mW)
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3. Fiber optics (integrated probes)

+ use for process monitoring and control
+ significant increase of application potential
+ "remote" spectrometer

spectrometer  laser

1 |¢

integrated fiber probe containing the

necessary filters (BP, BR) and focusing optics N
BS T
ko
\ 1-50 mm
o o *4— sample :
laser radiation suppression filter

sample

collection optics

wavelength analyzer

detector

laser

computer

4. Holographic filters

+ significant reduction in spectrometer dimensions and cost

+ more radiation on the detector

- an individual filter is required for each excitation
wavelength

Scheme compact Raman
spectrometer
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Dispersion and non-dispersive spectrometers

Dispersion multichannel Raman spectrometer Non-dispersive FT Raman spectrometer

Raman spectrum | I||I “— Raman spectrum
multichannel detector _
FT interferogram

I

blue red X J
< Wbl
spektrograf - detektorj«— multiplexer
sample
& .
laser 7 laser v
Advantages
sensitivity - high frequency determination accuracy

- higher signal to noise ratio
7 Aexc 200-800 nm
#  (limited by CCD detector response)

higher aperture

always A, greater than 1064 nm
usually without fluorescence
zpravidla bez fluorescence

A U

Disadvantages

” a compromise between resolution and range 7 worse signal to noise ratio
# more fluorescence # often high excitation power of the laser

» changing spectral resolution
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Lasers for Raman spectroscopy

Aeye <900 Nm = dispersive Raman spectrometers (limited by silicon
CCD detectors)

Aee = 1064 nm = non-dispersive FT Raman spectrometers

21

Continuous (CW) lasers

typ

A (nm)

typical power
second harmonic Ar* 224, 257, 229 15-200 mW
Ar* air cooled 488, 514.5 5-50 mW
Ar* water cooled 351.1,454,5,457.9, 465.8 0.1-10 W
476.5, 488, 496.5, 501.7, 514.5
He-Ne 632.8 5-100 mW
He-Cd 442 nm 5-50 mW
Kr* 406.7,413.1,647.1,752.5 0.1-4W
Nd:YAG 1064 0.1-10 W
second harmonic Nd:YAG 532 0.05-5W
diodovy (external cavity, fixed A) 785 300 mW
diodovy (external cavity) 780-1060 500 mW
dye, Ti: sapphire continuously tunable
prof. Otruba 2010




Filtration of the excitation light

Why?
for suppressing unwanted spontaneous emission (eg. plasma lines in ion lasers, wide
background from Nd:YAG and diode lasers)

How?
* interference filters flat
* pre-monochromator like filter mirror /‘ B from laser

holographic grating — diffraction

glass cube ~_ / S grating

exit
aperture

Grating premonochromator for filtering
plasma lines from the collimated beam

from laser

exit

<:’ high pass holographic bandpass filter; up to 80% (Kaiser Optical
aperture

System)
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Laser band-pass filters

Volume transmission
hologram on cube diagonal
Laser emission —_—
I T o
J = Stop
S/ Filtered output
L |
|

Figure 2. Laser bandpass filter configuration using volume transmission hologram
embedded in a cube for maximum dispersion.

A very effective suppression of the plasma lines of the ion laser
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Double monochromator

N\
mirror exit slit

|

intermediate

entrance slit

mirror

Double monochromator scheme
(eg. Spex 1403)
70s to 80s

24

grating
2

Advantages:

high resolution
excellent background separation

measurements near the excitation line

Disadvantages:

slow measurement (step by step)

too large dispersion for multi-channel
detection
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Triple spectrometer

High resolution triple spectrometer

>

N r——

Sample Polarizer(e,)
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Triple spectrometer

pre-monochromator (filter) spectrograph

N l

from sample

multichannel
detector

A diagram illustrating the operation of a triple spectrograph

Advantages: Disadvantages:

excellent background separation

10-12- 104 low aperture (low light on detector)
measurements near the excitation line high price

versatility
26
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Holographic notch filters
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Non-dispersive spectrometers

FT Raman - a multiplex technique where many wavelengths are generated
by an interferometer and which generates an interferogram recorded by one

detector

cyclohexane, FT-Raman

50% beamsplitter fixed mitror
plidi,

M.WT

- ®

MOVINE MIMor !

3 \g‘{ L1

Compa NG
__ = A

& S Mirror Travel

— i .r,' t-I:]
* 1 3 RP filter '
§
BR filter Il ' C
'
10398 9398 8398 7398 6398
detector
Frequency, (cra')
Figure of FT Raman spectrometer based on Interferogram (A) for cyclohexane excited
Michelson interferometer at 1064 nm and Raman spectrum (C)
modulation - linear motion of the mirror, which 1

maximum mirror

resolution ov =
< ——
max Path

generates the path difference a-b = 2x

/
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Fiber probes

Multimode fiber:

propagation of light in optical fiber

entrance slit

e

l collection fiber

P/ entrance slit

s

collection fiber

Two methods of connecting optical fibers to the
spectrometer:

A) direct connection without possibility of f#
spectrometer adaptation

B) a conventional method allowing even placing
the BR filter in a collimated beam

o 15 |

BP filter

- Sxcitation fiber

1 - 100+ m FO cable

T

spectograph | [H y
P g
G \ Fiber optic

probe head

el collection fibet(s)

entrance slit

general scheme for the use of optical fibers

laser —»

collection
fiber(s)

I mm

¢ B &

4 around | 6 around | 18 around |

fiber probe arrangement (n around 1)
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High aperture holographic imaging spectrograph

focal plane

entrance aperture

holographic transmission grating slit

(fixed, replaceable) holographic
notch filter

Scheme of transmission holographic spectrograph (e.g. Kaiser |.8i)
Adv-antages

large aperture (transition from f/ 4 to f/ 1.4 represents almost an order increase of
signal on detector (4/ 1.4) 2 =8.2)
compactness (small size)

Di
high dispersion isadvantage

different gratings for different excitation wavelengths
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Nonlinear methods - SRS and ASRS

2 ——x— 2 5=
w_f Ws w| @s . hs
3 3
1 IC«)V 1 i
. o

Diagram of energy levels and transitions for a) stimulated Raman
scattering, b) anti-Stokes stimulated Raman scattering

SRS (Stimulated Raman Scattering) is a variant of the dual resonance (a) method in which
the laser (frequency w),) level 2 is virtual. If w, is the frequency of the vibration transition,
then w, - Wy = Wq. If we insert an auxiliary beam into the cuvette with the frequency wq, ie
with the Stokes frequency of the Raman spectrum, the amplification at this frequency
occurs. In the case of ASRS (Antistokes SRS) two virtual levels 2 and 4 are excited and w,
+ Wy, = W, The methods are used to measure high resolution up to 0.0l cm-'. Tunable
infrared (Raman) lasers are based also on this principle.
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Raman spectroscopy

» Each line of the Raman spectrum is dependent on its
properties:

on the number and mass of co-vibrating atoms of a
molecule

on their spatial arrangement
on a molecular internal force field
» Obviously, Raman spectra can be used analytically,

especially in solving some differences in constitutions
which are difficult to prove chemically

Prof. Dr. Arnost Okac:Vyklad k zakladnim operacim v
chemické analyse, JCMF 1948
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Experimental advantages

» possibility of measurement in aqueous environment

= |ow intensity of Raman scattering for water

= the optical materials used are not sensitive to moisture
» possibility of measurement in glass containers

= measurement in closed ampoules — e.g. under vacuum
» easy to use glass fiber optics
» minimum treatment requirements for solid samples

» intense bands -C=C-, -N=N-, -S-S and other symmetric
vibrations
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Application of Raman s. in geology

» phase identification and analysis: in some cases, RS is the
simplest or even the only one method available to identify
a mineral, especially when encased in another transparent,
non-fluorescent mineral. It makes it easier to distinguish
members of isomorphic series more easily than X-ray
diffraction.

» to identify gases in gas - liquid enclosures

» study of structure (especially bond of OH groups),
structure order

» Phase transitions (temperature change of perovskite
structure in the Earth mantle)

» Determination of thermodynamic properties of minerals

35 prof. Otruba 2010



Other applications of RS in geology

» resonance Raman
spectroscopy

» Electronic Raman
spectroscopy

» hyper-Raman
spectroscopy

» coherent antistokesian
Raman scattering (CARYS)
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Geological materials - hematite

37
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Figure 4. Raman spectra of (a) hematite and (b) magnetite, acquired
on B and A sherds, respectively. In the (a) spectrum the bands of
hematite are indicated by a®, while those of rutile are labelled with a®
symbol; the doublet marked with @ is due to Cr(lll) luminescence.
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Identification of drugs
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Identification of drugs
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Study of complexes
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Fic. 3. Raman spectra at different ratios of CN~ with respect to
[Ag(CN),]". The concentrations of CN~ ranged from 0.00 to 1.00 M at
the constant [Ag(CN),]~ concentration of 0.100 M before mixing the
two solutions. (@) 0.100 M, (&) 0.200 M, (¢) 0.300 M, (d) 0.500 M,
and (e) 1.00 M of the CN- concentration.
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FiG. 4. Raman spectra at different ratios of CN- with respect to
[Ag(CN),]-. The concentrations of CN- ranged from 0.00 to 2.50 M at
the constant [Ag(CN),]~ concentration of 0.500 M before mixing the
two solutions. (a) 0.00 M, (b) 0.500 M, (¢) 1.00 M, (d) 1.50 M, and
(e) 2.50 M of the CN~ concentration.
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Archeology - ceramics

Intensity

ow\y

R

l 'l l

1L " 1

" 1 1
0 400 800 1200 1 1600
Rcm

Figure 3. Spectra recorded on A wares containing characteristic
peaks of diopside @), K-feldspars @ and plagioclases (9).
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Analysis of compounds in the discharge lamp

Photographs of lower ends of arc tube A immediately after seasoning (i.e., 7 min vertical burning) and of arc tube B after burning vertically
for 125 h.
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Analysis of compounds in the discharge lamp

60000 - Deposition from Unbroken Arc Envelope 70000+
------------ Crystobalite Reference 1 —— Deposition from Unbroken Arc Envelope
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FiG. 11. Raman spectrum of white envelope deposit (Positions 1 and

FiG. 9. Raman spectrum of white lamp envelope deposit (Positions 1 2 on arc tube B shown in Fig. 2) and a Sc,Si,O, reference spectrum
and 2 on arc tube B shown in Fig. 2) and an a-crystobalite reference from the HTSL Raman Database.

spectrum from the HTSL. Raman Database.
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Analysis of carbon materials
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DORISS system (depth of 3607 meters i

Monterey Bay)
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Figure 8. Methane Raman spectra. Spectrum 8A (5 MPa, 278 K, 150 sec (15 sec X 10))
shows two peaks (3017, 3066 cm') assigned to methane gas. Spectrum 8B (7 MPa, 276
K, 200 sec (20 sec X 10)) shows one peak (3054 cm) for pure synthetic methane
hydrate. Spectra 8C ( 7.7 MPa, 275.4 K, 25 sec (5 sec X 3)) shows three peaks (3017,
3054, and 3066 cm-1) for a natural hydrate sample measured in situ. Of the three peaks

in 8C, two peaks (3017 and 3066 cm) can be assigned to gas phase methane and 3054
cm! can be assigned to methane in the hydrate phase.
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Fig. 9. Raman spectra showing H,S in the 51262 cage (The peak at 2570 cm-' is a

vibrational mode from methane in the hydrate), (400 sec, 20 sec X 20)
47
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Raman micro probe

RECORDER

'42_»_%—._ —»— AMPLIFIER —»—\/\}
[

— \ DETECTOR
GRATINGFILTER

LASER

MICROPROBE —

Hb— SAMPLE
7

Fig. 4.25 Raman microprobe (point illumination) instrumentation. In the alternative
global illumination configuration, a larger surface area is illuminated, and the detec-
tion equipment is replaced with an image intensifier phototube and camera
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Spectral images were generated from a set of 15 x 11 spectra taken at 1 um interval
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Paper surface mapping

Paper surface CaCO3 SB latex Ce“lﬂose SB/CﬂCO:;
1086 cm™ 1001 cm™ 1120 em™ (1001 cm™)/(1086 cm™)

3-D view

Raman Intensity

3-D view
from y-axis

Raman Intensity

FiG. 6. Surface mapping of SB/CaCO, coated paper.
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Spatial distribution of aerosol

> S | S | .
c M ~
Qo iy
> Salbutamol L
o Salbutamol .~
BDP e \ |
te ud, Q i &

1200 1300 1400 1500 1600
Raman shift / cm-1

Raman spectra of pure samples Raman map of BDP and
of BDP and salbutamol salbutamol distribution

BDP - beclomethasone
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Detection of infected erythrocytes

T | 1 I
~ .
—_— |_
= —
<
> r . -
B Parasite-
[ .
o infected , :
E = _ FiG. 2. Optical images of uninfected and P. berghei-infected eryth-
C | rocytes. The uninfected mouse erythrocytes are indicated by solid ar-
v rows and the P. berghei-infected erythrocytes by dashed arrows. Mag:
L 1000,
< .
- o - V4
v . \ m
Normal N b2 - /
llL.\I\Ji\_]_L]1|lll}l_lll_l_[lll|Jll_l_l_lLl]]_kl -*'—\ : T
,/N N::‘:g
600 700 800 g90Q he- 4 ( Fe
the atom \ ' &
-1 N N’
Wavenumber/ cm ——( N pDa
FiG. 6. Raman spectra comparing the differences between the normal
and parasite-infected erythrocytes in the 550-900 cm™! region with the L\ S
632.8-nm HeNe laser. The band due to the vibrational mode C,NC, \ \
occurs at 743 em~! for normal erythrocytes and 754 ¢cm ! for parasite- jf =
infected erythrocytes, as indicated by the dashed line. More differences HO/'% H
can be identified by the weaker bands, at 724 and 795 cm ', indicated ;
hy the dotted lines. Fic. 4. Schematic representation of the iron protoporphyrin showing |

the atoms referred to in the band assignments. |

» 52 prof. Otruba 2010



Confocal microscope

Q <+—Detector

— | — <—Emission Pinhole
In focus Light —|/ |«——Qut of focus Light
4

<+—Dichroic Mirror

sser— (D) :
b |

N

Excitation
Aperature <«Objective Lens
Sample <+——EXxcitation Light

Focal Planes <E W

53

Focused beams of laser light are
scanned across the sample
(Laser Scanning Microscopy, LSM)

and light only from the desired focal
plane is allowed to enter the
detector.

These microscopes provide excellent
axial resolution, and very good signal
to noise sampling, however this often
comes with a sacrifice in temporal
resolution due to the slow nature of
scanning pixel-by-pixel across the
image during capture. Some systems
overcome this speed issue with either
faster scanners.
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Scanning mirrors

X
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== —
i _=
!/ \\
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L] \ /
optics o
3D scanning
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‘% movable *‘L‘”
mirror

Laser
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Confocal Raman microscope

Laser light
................... >
B Raman — ccD
Notch filters monochromator ‘

Video CCD

INNA,

Raman data

Computer

licroscope
objective

Laser light

Cover slip

Hanging drop
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Raman microspectroscopy

Confocal Line Scanning

Patented unique method to scan laser through objective to avoid
aberrations and maintain diffraction-limited spot. Then the spectrum of
each spot on sample is displayed on a different row of the CCD,

assuming that the spectrograph is stigmatic. European patent #
02400141.5 (1992) Notch filter -
. Pinhole

Diaphram

Scanner

Slit

Notch filter/
beam splitter

CCD Detector

e

: ~"" Line
S L -\ N
; Scanner
B Objective
Grating g | . Sample r
Pinhole  — Vi
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Raman nanospectroscopy

» Near field techniques

probe near surface (,,near field*)

Near-field spectroscopy

Near field microscopy
SNOM - scanning near-field optical microscopy
UV-vis, IR (IR-SNOM), Raman spectroscopy
+ TERS

photoluminescence, fluorescence
resolution better than 50 nm
spectroscopy of single molecule

NS

" adsorbate
Laser | ,
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Application of SNOM

Single Molecule Detection|.K.Trautmanet al. Nature 369,40, (1994)
Raman ScatteringC.L. Jahnckeet al. Appl. Phy. Lett. 67 (17),2483 (1995)

Polarization and OrientationB. McDaniel et al., Appl. Opt. 37, 84
(1998)

Magnetic-ImagingU. Hartman, J. Magn.& Magn. Mater. (1996)
Data StorageH.|. Mamin, IBM |. Res. Develop. (1995)
Biological Imaging. VanHulstet al. J. Struct. Bio., |1 19,222 (1997)

Quantum Dots, Quantum Wi ires H.F. Hess et al. Science 264, 1740
(1994)

Lithography S. Madsen et al. . App. Phy.82 (1) 49(1997).

Photonic Device Characterization S.K. Burrattoet al. App. Phy. Lett.65,
2654 (1994)

Semiconductor/ Defect Characterization LaRosaet al. Mater. Res. Soc.
Symp. Proc. 406,189-194 (1996)
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Raman - SNOM

» probe distance - up to
10 nm

» probe aperture

» scanning modes

transmission
(transparent samples

only)
reflective - sharp probe

- transmitter, receiver,
both

scattering - transmitter,
receiver, both

59

computer
double
spectrometey
T / piezo proTT| §
PMT| [} / | tube :
b // scanner [
. lens
fiber NSOM fiber :
A sample
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PMT] \ | lens T
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laser
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Raman-SNOM

probe distance —to 10 nm
* probe aperture
* scanning modes

perpendicular or oblique laser excitation |,

22

Raman ‘ Laser

30
/

LASER

DIODE

PIEZO
18

SPECTROMETER

32

/

CONTROLLER

Objective

uadrant
etector

Laser

o Diode
Bent tip
IX YZ

i Scanning
Stage

Sample
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Phase separation

AFM image of PMMA-SBR polymer blend,
centrifugally

Raman image of PMMA-SBR polymer

(polymethymethacrylate - styrene-butadiene- blend.

rubber) .
applied to a glass substrate. Scan 20x20 pym, PMMA surfaces are COIO.r coded n
topographic blue, SBR surfaces are displayed in
30 nm scale red. views: 200x200 spectra
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Measurement of stress in material

Raman display the same areas as in
AFM measurement of indentation the adjacerr:t f)i'gure.

from Vickers hardness test Si. )
. The image was calculated from the
A 2.75 pm diagonal and 210 nm depth position of the parabolic

imprint was created by force approximation peak
50 mN. Scan area: 10x10 pm.
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Measurement of stress in material _ phonons

High resolution analysis can provide very detailed
information on intrinsic stress and strain in a sample.
Raman map of a sub-micron structure (0,6 x 0,6 um?
showing the Si-phonon shift used for stress analysis.

63

» Fonon - quasi-particles of

crystal lattice vibrations,
vibrational quantum
spreading through the
crystal lattice. Phonons can
be used to describe the
propagation of sound waves
in solids. The name phonon
originated as an analogy to a
photon.A photon is a
particle of an
electromagnetic field, a
phonon is a quasi-particle of
an undamped sound field in
a solid. It ranks among the
bosons.
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Mechanical stress in nanostructures

laser
beam

ohyb [ ym] \

— 0 A\
—— 180
— 240 “
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Scattering

wafer canti
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Special techniques of RS

» resonance - RR

» surface-enhanced - SERS

» surface enhanced resonance - SERRS

» photoacoustic— PARS (non-linear, pulsed)
» hyperRaman (two photon pumping)

» coherent anti-Stokes - CARS
» coherent Stokes - CSRS
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RRS
(Resonance Raman Scattering

» Excitation into the absorption band of the molecule, but

there is a risk of photodegradation and interference with
the fluorescence

I

R
QAL RRS
]’ \, NQ 10-¢ M porphyrin

,< :
O'L\( \/' _/[R i 800

\ / © 30 A 8.6x10°M H TMPyP "
254 in aqueous solution

T T T T T T T T T T T T T
200 300 50! 600 700 800 400 600 800 1000 ‘ 1200 1400 1800
m Raman shift / cm
o
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Nonlinear methods - CARS

4 j ~ — -
K2  Kas
2 A — .b — e b)
| Was| q) K K1
(:.)1 6)2 &)1 ! R;
3 Y K1 Krs )

In the CARS ("four-frequency mixing") method, unlike ASRS, relaxation from the first virtual
level 2 is forced by radiation from the second laser at w,, which causes an increase in the
population of level 3 and the antistokes transition is stimulated emission of coherent and
directed radiation.The w,s emission is based on a narrow cone. In dispersion samples
(liquids), the wave vectors are summed in vector (c), so that no dispersion element is
required to separate the detected radiation, unlike gases (b).
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Coherent Anti-Stokes Raman Scattering

CARS can stimulate the production of a significantly
larger amount of signal than spontaneous Raman
microscopy. Like spontaneous Raman, CARS probes
vibrational modes in molecules and does not
require the introduction of exogenous dyes or
markers, which is advantageous in imaging small
molecules, such as metabolites, for which labeling
may significantly affect their molecular properties.

CARS is a process that involves four photons that
interact with the third order nonlinear susceptibility
of the sample, which is a function of the vibrational
frequencies . To understand a CARS event, consider
two photons:a pump, of energy , and a Stokes, of
lower energy . Consider also a molecule with a
single resonance, represented by a third order
susceptibility. A CARS event can be understood in
two steps. Upon the illumination of the molecule
with the pump and Stokes photons, the first step is
initiated if the condition is met; that is, if the
diference in energy between the pump and Stokes
photons matches the energy of the excited
vibrational state of the molecule, so that the
molecule is excited. Once this happens, the second
step is the result of the interaction of this excited
state with a third photon, known as the probe, of
energy . This photon gains the energy of excitation
of the molecule, and an anti-Stokes photon is
emitted with an energy that has a higher frequency
than any of the incident photons.

68

Energy

; v/ probe
A A anti-Stokes
Stokes G g w AAAAS
ANANS |
[1> + | |0>

(excited state) (ground state)

i a)P a)as

p Ds 5 T _______
i | .

prof. Otruba 2010



CARS instrumentation

PUMP LASER

BEAM-SPLITTER

DYE LASER ‘,1
L
IJO
> =

PINHOLE
AN

SAMPLE

V'

0

N

DETECTOR

FILTER

SCREEN

CARS requires first power tunable lasers that are technically and economically challenging.
Unlike conventional Raman spectrometry, the radiant fluxes in CARS are very intense, so
the signal detection requirements are minimal. E.g. when monitoring the benzene vibration
transition at 992 cm! (totally symmetrical vibration of the benzene ring), excitation to
virtual levels at 513 nm, P = 100 kW / 6ys, stimulation at 540 nm, P = 30 kW / 6Us,
coherent radiation power from Interactive space 300W! Efficiency can be achieved

up to 10%, for spontaneous Raman scattering it is 10~ to 108%.
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Coherent anti-Stokes Raman scattering

microscopy (CARS):

F-CARS

Detector

¥
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» F-CARS and E-

CARS microscopy
with co-
propagating
incident beams,
forward and
backward signal
collection,
respectively

Obij., objective
lens; F, filter; BC.,
beam combiner;
L., lens; M., mirror
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CARS microscopy

Stokes —

Q . 10pm
O polystyrene

1 0pwm

polystyrene
sample

CARS

3116 cm’’
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Broadband Coherent anti-Stokes Raman
Microscope for Materials Research — CARS

/
p as \kw
(l)p M, ; Z
® § ‘ \

Microscope

More PS

Tube lens
More PMMA

Scan
lens

Filter [0

Deteclar

Fig. Shows the distribution of individual components in a mixture of
polystyrene (PS) and polymethyl methacrylate (PMMA).The image is generated
based on the relative ratio between peaks of 800 and 1000 cm-'.
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10 4
b9
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780-930 nm Laser, 1064 nm
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epi-CARS microscopy

We used epi-CARS
microscopy to image ex
vivo mouse brain tissues.
Epi-CARS microscopy
suppresses the
nonresonant background
from the aqueous
medium.

Mosaic picture of an epi
CARS mouse brain image.
The brain tumor is on the
left side and extends
across the center line and
distorts the symmetry of
thebrain. The magnification
was 20x. Image is displayed
in pseudo-color.

73 prof. Otruba 2010



Surface Plasmon Resonance(SPR)

Plasmonics

Surface Enhanced Raman Spectroscopy

SERS

Tip Enhanced Raman Spectroscopy/Microscopy
TERS
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Aplication of SPR

4

sensitivity enhancement of spectroscopy
techniques including fluorescence, Raman spectroscopy
... (surface enhanced Raman spectroscopy ~ 10'4 — 10'>x
allows identification of a single molecule)

change of refractive index by adsorption of molecules on
metal-dielectric interphase

shift of resonance due to adsorption of molecules on the
interphase

noble metal nanoparticles exhibit strong UV-Vis
absorption bands (not present in "macro")

measurement of thickness adsorbed layers, binding
constants of ligands ...
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Basic nomenclature

» SERS — Surface Enhanced Raman Scattering. Raman scattering on molecules bound
to the surface of a precious metal (gold, silver) can increase both scattered and
incident radiation due to the resonance interaction of photons with the quanta of
electron gas oscillations in the field of crystal lattice ions bound to the surface.

» Plazmon — quasi-particles (quantum) of longitudinal electron gas oscillations in
solids (in crystal lattice of metals, in non-metals, in plastics). In metals, for example, it
is possible to excite plasma oscillations as a collective excitation of conductive
electron gas against the background of crystal lattice cations. Reflected or
transmitted electrons or photons interacting with plasmons exhibit energy losses
equal to integral multiples of the plasmon's energy. The generation of plasmon (in
most materials with an energy of 10 + 20 eV) leads to energy losses, which are
manifested in the form of so-called Ferrel radiation (discovered in 1960) in the UV
or visual field.

» Surface plasmons — plasmons occurring at the interface of vacuum or material
with positive relative permittivity and environment with negative relative
permittivity (usually metals or doped semiconductors). They interact strongly with
photons to form another quasi-particle - the polariton.
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SERS

» Surface Enhanced Raman Scattering — the method brings
a great improvement in MS by applying suitable metal
molecules or nanoparticles (eg Ag) to the investigated
surface.

» The amplification of Raman signals is of the order of 104 -
10, in some systems it may be even higher.

» The improved sensitivity of the method is related to the
fact that molecules near Ag or Au nanoparticles exhibit
surface plasmon resonance. However, this explanation is
not the only one.

» Surface plasmon is a quasi-particle. It is a collective excitation
of free electrons on the conductor-insulator interface.
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Surface-enhanced

Raman scattering,
SERS

The difference between the
SERS spectrum of the 2-
mercaptoethanol
monomolecular layer on
the surface of the
roughened silver (a) and the
spectrum of liquid 2-
mercaptoethanol (b). Due
to the attractive surface
forces that modify the
structure of the electron
sheath, the two spectra
differ. (For clarity, the
spectra are offset and
displayed at different
scales.) Source:Wikipedia.
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Surface plasmons

»Surface Plasmon - polariton = coherent "collective" oscillations of electrons in the
conductive band

»Its electromagnetic states are coupled to the metal / dielectric interface
»formed by charge in metal (e-) and elmag. field in both phases

- resulted in associated oscillations e-density and elmag. field

(= "Levels" of electron density oscillations )

- field intensity exponentially decreases with distance from the surface of the metal
phase

(=> localization in the interphase) propagates as a longitudinal wave at the
interface

» The properties of the plasmon depend on- composition of interphases(€,R,)
- refractive index of dielectrics (light guide, detection of chemical bonds,

nanostructures)
) 6,_ - Asrp = Dielectric z
- LI bl VLT Sl VLD Nrinlid LI N

Metal
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Mechanism of surface plasmon
resonance(Surface Plasmon Resonance)

» The incident light A (hv) excites the electron cloud
oscillations of the conductive band with subsequent
amplification of the elmg. field at the surface interface

» = in light absorption resonance, Ao increases by several
orders of magnitude (= surface plasmon resonance)

» Metallic nanostructure acts as an antenna.

hy

%}/{’Wh AT ™
ALLEHHN AL
T ‘ﬁiu-muy T wmw T+

surface plasmon

metal
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Nanoparticle plasmons

» Nanoparticle plasmon -
no longer exists localized
energy levels (forming a
band / cloud). Min. particle
size:> 2 nm.

» Interaction with light
=> excitation of e-cloud
oscillations => polariton
(el. Polarization) L ]

Small nanoparticle | ’
interaction with light =>
dipole radiation (E-field) (a,
b)

larger nanoparticles =>
quadrupole radiation (c)
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Surface Enhanced Raman Spectroscopy

» Conditions:

Max. enhancement (incident and scattered light (Raman) is amplified
by plasmon resonance) for frequencies with minimal shift AA (both
can not be very shifted in resonance => less gain)

Plasmon oscillations must be perpendicular to the surface
use of Au,Ag, Cu (NIR-Vis) nanostructures
,Hot-Spots* (the signal is not representative to the surface)

» combination of advantages
fluorescence - high light gain
Raman spectroscopy - structural information
» Theory:

binding - charge transfer, formation of bonds

excitation of surface plasmon
?
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S.

RS Spectroscopy

» giant enhancement of
Raman signal

» two mechanisms involved

83

electromagnetic-long
range, depends on metal-
substrate properties
(surface plasmonsare

involved)—coinmetals —Au,
Ag, Cu

chemical-local, molecular
structure plays an
important role (formation
of surface complex)

Electromagnetic

Excitation Excitation
of surface free of charge-transfer
electrons of the transition of
metal — plasma surface-complex
oscillation species

Surface-plasmon Molecular
resonance resonance

prof. Otruba 2010



SERS - history

» An important milestone in the use of combination scattering was
the discovery of surface-enhanced Raman scattering in 1977 by two
groups of researchers independently of each other. Historically, the
first SERS - Surface Enhanced Raman Scattering - of pyridine
adsorbed onto the surface of electrochemically roughened silver
was measured in 1974, but was not correctly interpreted. At the
same time, both groups proposed two primary SERS theories,
recognized to this day: electromagnetic, based on excitation of
surface bound plasmon, while chemical theory is based on charge
transfer complexes.

» The most commonly used materials for SERS are gold and silver
with a surface with irregularities at least one order of magnitude
less than the wavelength of incident light. The resonant frequencies
of these materials fall within the range of visible light and near
infrared radiation. The amplification of the combination scattering
for a flat substrate is in the range of 103 + 10°.
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SERS on nanostars

» Calculated enhance

and cross-section = Raman enhancement SR
£ 0 1.2x108 a=17.5 nm
values for a . =15 o
. "6'.) a=9°
hypothetical nano- 5
. Q
star with two- §
pronged. 5
=
» Source: P S. Kumar et S
LN hnol -
al; Nanotechno ogYy 400 800 1200 1600 4000 8000

19 (2008). Shift (cm) Cross section (nm?)

Figure 5. Left: calculated Raman enhancement in a two-tip gold
particle in air. The transitions involved in the Raman process are
assumed to occur 2 nm away from the gold surface. Right: scattering
cross section of the same particle. The particle shape and geometrical
parameters are shown in the insets.
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Nanostars

Image of a nano-star in a transmission scanning electron
microscope TEM - Transmission Electron Microscopy,
creating an image of a thin object by passing energy
electrons.The image formed by the passed electrons is
then enlarged and focused by electron optics and
converted to visible radiation on the screen, which is
usually further recorded by a CCD camera.Another
technique is SEM, in which the image is produced from
reflected electrons. It is complemented by a single gold
nanostar image using Atomic Force Microscope (AFM), an
atomic force microscope.The machine scans the surface
of the material using a tip suspended on a flexible swing
arm.The tip is attracted by electrostatic and van der Waals
forces. Movements of the arm above the surface are
monitored by a laser. The microscope is so sensitive that it
can track the electron orbitals of material molecules.The
AFM microscope was invented in 1986 by G. Binnig, C.
Quat and C. Gerber. (bottom left) and a phase portrait of
a nano-star using electrostatic microscopy (bottom right,
white areas show areas with charge accumulation at the
sharp peaks of the star. Source: Nanotechweb).
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Individual nanostars

Source: NIST

87 prof. Otruba 2010



Nanostars penetrate to the living cell

» The video shows the
movement of individual
nanostars bound to EGFR
(Epidermal Growth Factor
Receptor) protein molecules
in a living human cell grown
from a cervical cancer. Note
the unbound nanoparticles
moving rapidly across the
field of view.The bound
nanoparticles move slowly,
towards the cell nucleus.

» Source:Aaron et al.: Opt.
Express 16/3 (2008).
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Tip Enhanced Raman

HROT SPM

Elmg. pole 4 h ¢

From nanoparticle plasmon resonance
(SE) to tip enhancement (TE)

P. Hewageegana, M. |. Stockman: Plasmonics
enhancing nanoantennas

Infrared Physics & Technology 50 (2007) 177—-
181
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Enhancement

«

Spectroscopy
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TERS instrumentation

I Scattered light to the spectrograph
He-Ne

Laser beam to the sample

laser

comparison of focus

working distance N\
with tip apex area objective aold samnle

Source: He-Ne laser (632.8 nm) ~0.3 mWV on sample
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Example of TERS application

Brilliant Cresyl Blue (BCE) Dye on Gold

BCE onsmooih gold
integration time: 100 =
accumvulations: 2
ohjecitre: 100X

lager power: 1YW

tip tunmeling
tip reiracted
e SRR L e o T P ey
[ S0 p L] 124 140 1600

Ramamn shifi / e -1
Monolayer of dye adsorbed on Au film, STM Ag-tip
G. Picardi, K. Domke, D.Zhang, B. Ren, J. Steidtner B. Pettinger,
Fritz-Haber-Institut der Max-Planck-Gesellschaft
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Instrumentation-integrated AFM + TERS

Objectives

AFM head

Raman
Spectrometer

-

Closed loop
steering
mirror

Closed loop
XYZ flexure
piezo scanner
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Instrumentation - integrated AFM + TERS
two optical ports

Z
E
3
o 2 < probe R
\\
__. . e, %) £2(A)
e | -2 N
—] !\ TN W
> medium et
- i .8
= il N
Bt\\
zamplo \
N
€y (A) \
Y
\
\.
9

%\ Modified AFM tip: '
/ Ag coating, colloid... ® ¢

Log(I/l,)

g 5
Only the area of the sample 4
in contact with the tip s 1 1 5 .
experiences enhancement d, nm
- // Local field intensity dependence (logarithmic scale) on the

Beamsplitter probe-sample distance d.
Here R=100 nm, X=0 nm, Y=0 nm, Z=1 nm; light
l wavelength: 653 nm and 775 nm.
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Combination - AFM, Raman nanomapping

Parallel images of silicon semiconductor

Image of Ramanovy intensity—520 cm-1, the

AFM image -9 x 7 pm
same area
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Application

» according to the type of investigated material
anorganic
organic
geological
biological ...
» by instrumentation
dispersion vs. FT
macro X micro X nano
» according to the data evaluation method

spectra libraries, ,, puzzles solving ", chemometrics ...
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Studied materials

» SAMPLES - solids, liquids, phase interfaces

» examples

96

anorganic —corrosion layeres, surfaces of hard disc, silicon,
amorphous carbon, diamonds

organic -supramolecular systems, contaminants in enviroment
polymers -photolabile materials

biological-in vitro, in vivo

geological -minerals, rocks

archaeological - from the Paleolithic to the Modern Age
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Field measurements

Positive Match Ahura Scientific ﬁ

Sodium selenite
FirstDefender FD2110
Mode: Auto, Point and Shoot
Power Setting: High
The measured data is fully consistent with the library
item for Sodium selenite.
Laser Status: Pass
CCD Status: Pass
Lamp Status: Pass
Calibration: Pass
Last Checked: 3/27/2008 3:09 PM

Scan Warnings: None

A et b e i 0B el o Sy,

= Scan
)
|
I K/w e Eoitive Miabeh AhuraScientific
| TNP (picric acid)
FirstDefender FD2110
n
WY 5 7 * o Mode: Auto, Point and Shoot
500 Power Setting: High
The measured data is fully consistent with the library
item for TNP (picric acid).
Nalzovice27-03 - Scan068 Laser Status: Pass
CCD Status: Pass
Lamp Status: Pass
Calibration: Pass
Last Checked: 3/27/2008 3:00 PM
Scan Warnings: None
|
Jﬂ i
M, J Il
' \ |
|
20 1000 1508 2000 - 00 000
Rarsn Shf (om 1)
3/27/2008 3:00 PM

Nalzovice27-03 - Scan065
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Field measurements
Hanheld .Raman spectrometer — AHURA

—N
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