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 - symmetries
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Symmetries

 - regular assemblies of protein oligomers are 
common in nature

 - oligomeric protein structures obey certain rules
→ no mirror symmetry

 - understanding symmetry rules may prevent 
incorrect interpretation of the data

 - presence of symmetry generally facilitates 
determination of the density map



  

Symmetries

 - A central section through the 3D Fourier 
transform is the Fourier transform to the projection 
in that direction

Projection Theorem, Euler angles
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Symmetries

 - A central section through the 3D Fourier 
transform is the Fourier transform to the projection 
in that direction

 - Images for all possible projection directions are 
required to obtain structure with homogeneous 
resolution in all directions

- Euler angles φ and θ cover ranges of (0° - 360°) 
and (-90° - +90°)

Projection Theorem, Euler angles

x y

z

φ

θ



  

Symmetries

 - one symmetry axis (usually molecules oriented 
with the symmetry axis alongside z)

 - Asymmetric unit – the smallest portion of the 
angular space to which symmetry operation can 
be applied in order to completely fill the angular 
space

 - C1 – the most trivial case, no symmetry, φ (0° - 
360°), θ (-90° - +90°)  

Rotational (cyclic) symmetries
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Symmetries

 - one symmetry axis (usually molecules oriented 
with the symmetry axis alongside z)

 - Asymmetric unit – the smallest portion of the 
angular space to which symmetry operation can 
be applied in order to completely fill the angular 
space

 - C2 –  φ (0° - 180°), θ (-90° - +90°)
 - C3 –  φ (0° - 120°), θ (-90° - +90°)
 - C4 –  φ (0° - 90°), θ (-90° - +90°)
 - C6 –  φ (0° - 60°), θ (-90° - +90°)      

Rotational (cyclic) symmetries



  

Symmetries

 - one n-fold rotational axis and two-fold axis 
perpendicular to it

 - Asymmetric unit 
 - D2 –  φ (0° - 180°), θ (0° - +90°)
 - D5 –  φ (0° - 72°), θ (0° - +90°)
 - D7 –  φ (0° - ~51°), θ (0° - +90°)      

Dihedral symmetries



  

Symmetries

 - faces, edges, and corners are related by 
symmetry operations

 - tetrahedral – 4 3-fold axes and 3 2-fold axes
 - octahedral – 3 4-fold axes of symmetry, 4 3-fold 
axes of symmetry, and 6 2-fold axes
 - icosahedral – 6 5-fold, 10 3-fold and 15 2-fold 
axes 

      

Platonic symmetries



  

Symmetries

 - faces, edges, and corners are related by 
symmetry operations

 - tetrahedral – 4 3-fold axes and 3 2-fold axes
 - octahedral – 3 4-fold axes of symmetry, 4 3-fold 
axes of symmetry, and 6 2-fold axes
 - icosahedral – 6 5-fold, 10 3-fold and 15 2-fold 
axes 

      

Platonic symmetries

EMAN2



  

Symmetries

 - A single view contains all the necessary info for 
3D reconstruction

 - 2D surface lattice rolled into 3D
 - 3D reconstruction approaches:

 - Fourier-Bessel analysis
 - Iterative Real-Space Refinement (IHRSR)

      

Helical symmetry



  

Symmetries

 - A single view contains all the necessary info for 
3D reconstruction

 - 2D surface lattice rolled into 3D
 - 3D reconstruction approaches:

 - Fourier-Bessel analysis
 - Iterative Real-Space Refinement (IHRSR)

      

Helical symmetry

 -  small inaccuracies in indexing 
lead to incorrect structure
 - requires strict helical symmetry
 - requires flat straight helices
 - laborious

      



  

Symmetries

 - A single view contains all the necessary info for 
3D reconstruction

 - 2D surface lattice rolled into 3D
 - 3D reconstruction approaches:

 - Fourier-Bessel analysis
 - Iterative Real-Space Refinement (IHRSR)

      

Helical symmetry

 -  requires fairly good estimate of 
the cylinder diameter, rise, and 
twist
 - can cope with heterogeneous 
data
 - manages to reconstruct weakly 
diffracting filaments (where layer 
lines are not visible)

      



  

Symmetries

 - Smaller asymmetric unit

 - Decreased computational demands

 - Improved signal to noise due to better averaging

 - Lower number of particles required

      



  

Map validation

Resolution



  

Map validation

 - cryo-EM data – low signal to noise (VERY)

 - model bias – persistence of an incorrect map or 
map features during refinement

      



  

Map validation

 - in order to minimize the model bias – separate 
the data into two halves, refine each half separately 
using the standard SPA protocol

      



  

Map validation

 - nowadays used as a metrics for map 
resolution estimation
 - calculate 3D Fourier transform of each map
 - calculate cross-correlation coefficients 
between the two 3D FTs for individual resolution 
shells
 - plot the CCC against the resolution for which it 
was calculated
 - determined CCC threshold for which 
resolution is reported

Fourier shell correlation

FSC
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Map validation

 - nowadays used as a metrics for map 
resolution estimation
 - calculate 3D Fourier transform of each map
 - calculate cross-correlation coefficients 
between the two 3D FTs for individual resolution 
shells
 - plot the CCC against the resolution for which it 
was calculated
 - determine CCC threshold for which resolution 
is reported

Fourier shell correlation

Penczek (2010), Meth. Enzym.



  

Map validation

 - which FSC value to report?

Fourier shell correlation

 - Figure of merit (C
ref

=0.5)



  

Map validation

 - observed features of the map should be 
consistent with the resolution assessment

 - visibility of expected structural features
 - helices visible at 8Å
 - strands separated at 4.8Å
 - side-chains visible beyond 4Å



  

Map validation

 - experimental
 - cryo-ET
 - tilt pairs (common-lines)



  

Map validation

  - Steps:
- map is correct at low resolution

- spurious noise features are not present (noise overfitting, over-refinement)

- FSC curve has a proper shape

- resolution estimate corresponds to the observed structural features

- acquisition of complementary data to confirm the model (e.g. in low resolution)



  

Map interpretation

Segmentation



  

Map interpretation

Segmentation

Visualization tools
 - Chimera/ChimeraX
 - Coot
 - PyMol
 - VMD
 - Amira (Commercial)
 - ...

Segmentation

 - identify boundaries map regions which represent different structural components
 - component structures can be positions into the identified segments
 - the size of the segmented components is related to the map resolution
 - manual segmentation | automated segmentation | knowledge-based segmentation



  

Map interpretation

?Resolution?
Segmentation



  

Map interpretation

Fit known structures Sec. str. assign. Model building

Sec. Str. Sequence
 assignment

Fold assignment
 from sequence

‘Template-free’
 modelling

?Resolution?

Homology
 modelling

Rigid body fit

Segmentation

Multiple conformations
EMN/NMA

Real-space methods
MD-based methods

10-20A 4-10A <4A

template foundNo Yes

fit different from map

known component 
structure



  

Map interpretation

Fold recognition from density

 - 4.5-10A: secondary structure detection

 - 4.5A and better: de novo CA tracing and model building

 - programs: SSEhunter, SSEtracer, Ematch, Pathwalker, Coot, Buccaneer, EM-fold, 
Rosseta, Phenix, ARP/wARP, MAINMAST



  

Map interpretation

Fit known structures Sec. str. assign. Model building

Sec. Str. Sequence
 assignment

Fold assignment
 from sequence

‘Template-free’
 modelling

?Resolution?
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 modelling
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Map interpretation

Fold recognition from sequence

 

 

 - programs: MODELLER, SWISS-MODEL, Phyre2, RaptorX, I-TASSER, Rosetta, EVfold



  

Map interpretation

Density fitting



  

Map interpretation

Density fitting

- manual fitting
- positioning of the atomic structure into the cryo-EM density using visualization programs

- usually efficient (human brain efficient in pattern recognition)

- direct feedback

- good for initial placement of the component in to the map

- high level of subjectivity may lead to errors

- depends on contour level at which the map is visualized

- conformational rearangements cannot be modelled



  

Map interpretation

Density fitting

- automated fitting
- requires common representation of both the structure and the density map

- measure of the quality of the fit

- optimization protocol for fit improvement



  

Map interpretation

Problems of density fitting

- limited resolution
- many local optima with similar numerical 
values at low resolution

- local resolution, noise, scaling, filtering, masking

- blurring of the atomic structure

→ better resolution
→ improve scoring for goodness-of-fit
→ coarse-graining (change represenation)
→ fit/model validation



  

Map interpretation

Problems of density fitting

- conformational variability
- many lconformations which are observed in density maps deviate from the conformations of the atomic 
models which are fitted

- dynamics
- crystal packing effects
- errors in structure prediction

→ allow for the conformational changes 
during model fitting process = flexible fitting



  

Map interpretation

Model refinement

- without any restraints a model may fit well with a high score in near-atomic to low resolution density

- such a model will, however, not have standard protein geometry: backbone torsions (Ramachandran diagram), 
peptide planarity, chirality (trans/cis), bond lengths and angles, side chain torsions / rotamers

- refinement methods try to maintain standard geometry while fitting the model into the density map. The geometry 
restraints reduce the levels of freedom.

- map density contributes as an additional penalty in the scoring function

Programs: MDFF, Refmac, Rosetta, Coot, Phenix, Isolde, iMODFIT



  

Map interpretation

Model validation



  

Map improvement

- in order to facilitate map interpretation, the data processing should correct for the imperfections of the imaging 
system to the highest possible level

- these imperfections comprise:
- aberrations of microscope optical system (higher-order)
- sample drift and distortions caused by interaction of the electrons with a matter

- the effect is primarily pronounced at high frequencies (resolution) → parameter optimization and additional data 
processing primarily concerns improving the quality of high resolution maps (<4.5A resolution) 

- the effect on medium and low resolution (>8A) is limited and additional data processing usually does not result in 
any map improvement



  

Map improvement

Electron lens aberrations

- objective lens of the transmission 
electron microscope is really bad



  

Map improvement

Zernike polynomials

- complete set of orthogonal functions

- Zernike transform analogous to Fourier transform

- can be used to visualize lens aberrations

- the aberrations can be corrected for by introducing 
additional lens to the microscope or by software during 
the image processing



  

Map improvement

Lens aberrations

Defocus

- 200nm error in defocus estimation (1.2um instead of 1.0um) 



  

Map improvement

Lens aberrations
Astigmatism



  

Map improvement

Lens aberrations
Astigmatism

Defocus

- certain level of underfocus is necessary during cryo-EM data collection
→ corrected during CTF correction

- astigmatism can be eliminated to high extent by proper microscope 
alignment

- only aberrations which are relevant for the quality of medium and low 
resolution maps

- correct estimation of CTF parameters (defocus,astigmatism)
→ quality control – goodness of fit



  

Map improvement

Lens aberrations
Coma

- dependence with third power of frequency
- can be primarily removed by proper microscope alignment and 
further during data analysis in software



  

Map improvement

Lens aberrations
Spherical 
aberration- dependence on fourth power of the frequency

- lens is stronger off axis, plane of least confusion
- considered constant for microscope, further optimization in software 
possible



  

Map improvement

Sample distorsions during imaging

- local motion different in distinct parts of the image



  

Map improvement

Sample distorsions during imaging

- the information in each frame is damped by 
different B-factor due to distinct effects during 
data collection

- compensation for local motion (per particle) 
+ per frame amplitude weighting with 
corresponding B-factor => particle polishing 



  

Map improvement

Sample distorsions during imaging

- distortion of sample surface due to 
illumination with electron beam

- particles located in different depth of the 
specimen layer

→ defocus variance for particles 
    within single micrograph

- per particle defocus (astigmatism) 
estimation = ctf refinement 



  

Map improvement

Ewald sphere correction

 - the assumption that the image is 2D projection of the 3D object 
does not hold for thick specimens

 - wave-function at the image plane samples surface of the sphere 
in 3D FT of the object

- Friedel symmetry is lost

- depends on electron wavelength – stronger effect (more 
important to consider) for 100keV than for 300keV

Russo & Henderson (2018), Ultramicroscopy
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