C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 8 Quantum Mechanics II

PS/2020 Distant Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

C7790 **Introduction to Molecular Modelling** -1-

Schrödinger equation

time independent Schrödinger equation

Solutions to the SR equation are **pairs**: ψ_k and E_k.

Each pair represent possible realization of the system (a microstate) and its energy.

Hamiltonian of Chemical System

Hamiltonian of a chemical system, consisting of *N* nuclei of mass *M* and charge Z and n electrons of mass m, is given by:

kinetic energy operator entitled by the potential energy

Potential energy it is given by **electrostatic interaction** between charged particles:

$$
\text{Coulomb's law} \quad V = \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}}
$$

Hypothetical exact solution of time-independent Schrödinger equation (ground state): H_2O

It describes too many properties such as:

- \triangleright electron density distribution
- \triangleright distribution of nuclei due to translational, rotational and vibrational movements of the molecule
- \triangleright and all their combinations

This is too complicated for subsequent analyzes.

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation

The Born-Oppenheimer approximation **separates** motion of nuclei from electrons.

$$
\psi(\mathbf{r}, \mathbf{R}) = \chi(\mathbf{R}) \Psi(\mathbf{r}, \mathbf{R})
$$
\nmotion of nuclei
\nmotion of nuclei

Born-Oppenheimer Approximation

$$
\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \frac{1}{M_i} \nabla_i^2 - \frac{1}{2m} \sum_{i=1}^{n} \nabla_i^2 + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{Z_i Z_j}{r_{ij}} - \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{Z_i}{r_{ij}} + \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}}
$$

$$
\hat{H}\psi(\mathbf{r}, \mathbf{R}) = E\psi(\mathbf{r}, \mathbf{R}) \qquad \psi(\mathbf{r}, \mathbf{R}) = \Psi(\mathbf{r}, \mathbf{R})\chi(\mathbf{R})
$$
\nBorn-Oppenheimer approximation

\n
$$
\hat{H}_e\Psi(\mathbf{r}, \mathbf{R}) = E_e(\mathbf{R})\Psi(\mathbf{r}, \mathbf{R}) \qquad \hat{H}_R\chi(\mathbf{R}) = E_{VRT}\chi(\mathbf{R})
$$
\nelectronic properties of molecule

\nvibrational, rotational, translational motions of molecule

electronic properties of molecule vibrational, rotational, translational

C7790 **Introduction to Molecular Modelling** -7-

Electronic Properties of System

$$
\hat{H}_e = -\frac{1}{2m} \sum_{i=1}^n \nabla_i^2 + \sum_{i=1}^N \sum_{j>i}^N \frac{Z_i Z_j}{r_{ij}} - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i}{r_{ij}} + \sum_{i=1}^n \sum_{j>i}^n \frac{1}{r_{ij}}
$$
\n
$$
\hat{H}_e \Psi(\mathbf{r}, \mathbf{R}) = E_e(\mathbf{R}) \Psi(\mathbf{r}, \mathbf{R})
$$

$$
\hat{H}_e\Psi(\mathbf{r},\mathbf{R}) = E_e(\mathbf{R})\Psi(\mathbf{r},\mathbf{R})
$$

E(**R**)

The energy is a function of the position of nuclei (atoms).

R - determines the configuration of nuclei (atoms) in space => structure for which we can determine the energy

(function)

concept of potential energy surfaces

http://hypot.wordpress.com/2012/11/15/electron-density/

http://hypot.wordpress.com/2012/11/15/electron-density/

$$
\psi(\mathbf{r}, \mathbf{R}) = \chi(\mathbf{R}) \Psi(\mathbf{r}, \mathbf{R})
$$

ground state of the water molecule (schematic):

distribution of electrons in the static field of nuclei

it describes the overall state of the system partially

schematic representation of the molecular structure - based on the distribution of electron density

http://hypot.wordpress.com/2012/11/15/electron-density/

Nuclear Motions

the nuclei are affected by the potential

$$
\hat{H}_R = ?
$$

- $\hat{H}_p=?$ a) electrostatic interaction of nuclei with each other
	- b) effective potential of electrons in the field of nuclei

$$
\hat{H}_R \chi(\mathbf{R}) = E_{VRT} \chi(\mathbf{R})
$$

scalar value (not a function)

Nuclei motions:

- ➢ vibrational
- ➢ rotational
- ➢ translational

it can be further approximated into individual motions and their contributions using approximations based on a similar principle as used in the BO approximation

Nuclear Motions

the nuclei are affected by the potential

- a) electrostatic interaction of nuclei with each other
- b) effective potential of electrons in the field of nuclei

$$
\hat{H}_R = -\frac{\hbar^2}{2} \sum_{i=1}^N \frac{1}{M_i} \nabla_i^2 + E_e(R)
$$

$$
\hat{H}_R \chi(\mathbf{R}) = E_{VRT} \chi(\mathbf{R})
$$

Core movements:

➢ vibratory

value (not function)

- ➢ rotational
- ➢ translational

can be further approximated into individual movements and their contributions using approximations based on a similar principle as used in the BO approximation

How accurate is BO approximation?

The BO approximation recognizes **the large difference between the electron mass and the masses of atomic nuclei**, and correspondingly the time scales of their motion.

hydrogen atom

difference is bigger for heavier elements

 $M_p = 1836$ au $m_e = 1$ au

Atomic Units

Constants used as units

https://en.wikipedia.org/wiki/Hartree atomic units

C7790 **Introduction to Molecular Modelling** -14-

Summary

- \triangleright Born-Oppenheimer (BO) approximation is the most important approximation in molecular modelling
- \triangleright It is rather accurate because of significant difference between electron and nuclei masses
- \triangleright Electrons moves faster than nuclei (different time scales) and electrons can instantly update their distributions once the nuclei position changes.
- \triangleright BO approximation is foundations for all calculation methods (model chemistry) used in molecular modelling

concept of potential energy surfaces

Method overview (model chemistry

QM (Quantum mechanics) MM (Molecular mechanics) *CGM (Coarse-grained* **mechanics)**

R - position of atom nuclei R - position of atoms R - position of beads