C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 11 Quantum Mechanics III

PS/2020 Distant Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

C7790 Introduction to Molecular Modelling

Context

Context

Quantum Mechanics

- It can properly describe systems composed of atoms, which are further composed from electrons and atom nuclei (dual character particle/wave).
- Microstate energies are solution of time-independent Schrödinger equation.

QM Description of Simple Systems

hydrogen atom

- harmonic oscillator
- rigid rotator
- particle in potential well
- hydrogen molecule

approximate description for

- vibrational
- rotational
- translational

motions

Hydrogen Atom

Hydrogen atom

Motion of two bodies can be described by motion of one body with a reduced weight:

$$\mu = \frac{Mm}{M+m}$$
 What is the reduced mass of hydrogen atom (proton/electron)?
 $M = 1836$ au
 $m = 1$ au
 $\mu = 0.99945$ au practically the same weight

Hydrogen atom

C7790 Introduction to Molecular Modelling

Hydrogen atom - solution

$$\hat{H}\psi_{k}(r,\theta,\varphi) = E_{k}\psi_{k}(r,\theta,\varphi)$$
Solution:

$$\psi_{k}(r,\theta,\varphi) = R_{n,l}(r)Y_{l,m}(\theta,\phi)$$

$$E_{k} = -\frac{Z^{2}e^{2}}{8\pi\varepsilon_{0}a_{0}n^{2}}$$
angular (angular) part of the wave function (WF) radial part of the wave function

quantum numbers:

in atomic units:

n - principal quantum number (1,2,3 ...)

I - angular quantum number (0, ..., n-1 = s, p, d, f, g,...)

m - magnetic quantum number (-I, ..., 0, ..., I)

$$E_k = -\frac{1}{2n^2}$$

- Z proton number ε_0 - vacuum permittivity
- e electron charge a_0 - Bohr radius

Hydrogen atom - solution

Summary

- Hydrogen atom and hydrogen like atoms (atom cations with one electron) are only chemical systems, whose SE is solvable analytically.
- Allowed energy is discretized (quantized) and dependent only on the principal quantum number.
- Hydrogen atom WF is a foundation for atomic orbitals employed by quantum chemistry methods.

- a) The hydrogen atom has degenerate states, i.e., states with the same *n* have the same energy.
- b) Atoms with more electrons.

SR solution for simple systems

hydrogen atom

- harmonic oscillator
- rigid rotator
- particles in potential well

approximate description for

vibratory

➤ rotational

translational

motions

Harmonic Oscilator

Harmonic oscillator

Hamiltonian

spring with stiffness K

$$F(r) = K(r - r_0)$$
 \longrightarrow $V(r) = \frac{1}{2}K(r - r_0)^2$

the force is proportional to the deviation from the equilibrium position

Simplification:

$$\mu = \frac{m_1 m_2}{m_2 + m_2} \qquad \hat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r) \qquad V(r) = \frac{1}{2} K (r - r_0)^2$$

Harmonic oscillator - solution

$$\hat{H}\psi_k(r) = E_k\psi_k(r)$$

Solution:

$$\psi_{k}(r) = \Xi_{v}(r)$$

$$E_{k} = \left(v + \frac{1}{2}\right)\hbar \, \varpi$$
quantum numbers:
v - vibrational quantum number (0,1,2,3...)
quantum frequency $\varpi = \sqrt{\frac{K}{\mu}}$

$$\sqrt{\frac{K}{\mu}}$$

$$10,5 - \frac{10,5 - \frac{10}{5}}{10,5 - \frac{10}{5}}$$

$$\frac{10,5 - \frac{10}{5}}{10,5 - \frac{10}{5}}$$

Summary

- > Quantum harmonic oscillator cannot have zero energy in the ground state.
- > This intrinsic behaviour can be explained by uncertainty principle.
- For low vibrational numbers, the highest probability for particle finding is at equilibrium distance (this is opposite to the classical harmonic oscillator behavior).
- Energies are equidistant.

Harmonic vs anharmonic oscillator

Simplified description of vibrational motion. A more accurate empirical description is given by Morse's potential.

Rigid Rotor

Rigid rotor

Hamiltonian

with constraint $r = r_0$

Simplification:

$$\mu = \frac{m_1 m_2}{m_2 + m_2}$$

$$\hat{H} = -\frac{\hbar^2}{2\mu}\nabla^2$$

with constraint $r = r_0$

Rigid Rotor - solution

$$\hat{H}\psi_k(\theta,\varphi) = E_k\psi_k(\theta,\varphi)$$

Solution:

$$\psi_k(\theta,\varphi) = Y_{l,m}(\theta,\phi)$$

angular part of the wave function

$$E_l = \frac{\hbar^2}{2I}l(l+1)$$

quantum numbers:

- I angular quantum number (0,1,2, ...)
- m magnetic quantum number (-I,...,0,...,I)

moment of inertia $I = \mu r_0^2$

Particle in a Box

C7790 Introduction to Molecular Modelling

Particle in a box

1D potential box (the infinite potential well) is infinitely deep, so the probability of particle finding outside the box is zero.

Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2$$

with constraint $\psi(r) = 0$ for r > L and r < 0

standing waves

quantum numbers:

Solution:

n - quantum number (1,2, ...)

 $\psi_n = A \sin\left(\frac{n\pi}{L}x\right)$

 $E_n = \frac{\hbar^2 \pi^2}{2mI^2} n^2$

For a multi-dimensional potential box (3D), the dimensions can be replaced by the box volume.

Hydrogen Molecule

- > Many electron atoms (He, Li, ...)
 - Born-Oppenheimer approximation
 - > One-electron approximation
- Many atom (=many electron) molecules
 Born-Oppenheimer approximation
 One-electron approximation

$$\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial t}$$

časově závislá Schrödingerova rovnice

$$\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial t}$$

time-dependent Schrödinger equation

 $\phi(\mathbf{x},t) = \psi(\mathbf{x})f(t)$

time-independent Schrödinger equation

$$\hat{H}\boldsymbol{\psi}_k(\mathbf{x}) = E_k \boldsymbol{\psi}_k(\mathbf{x})$$

system can exist in several quantum states described by wavefunction $\Psi_{\rm k}$ and energy ${\rm E}_{\rm k}$

$$\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial t}$$
time-dependent Schrödinger equation
Born- Oppenheimer approximation
$$\psi(\mathbf{x}) = \Psi(\mathbf{r},\mathbf{R})\chi(\mathbf{R})$$

$$\hat{H}_{e}\Psi_{m}(\mathbf{r},\mathbf{R}) = E_{m}(\mathbf{R})\Psi_{m}(\mathbf{r},\mathbf{R})$$

$$\hat{H}_{R}\chi_{l}(\mathbf{R}) = E_{VRT,l}\chi_{l}(\mathbf{R})$$

electron motion in the static field of nuclei electronic properties nuclei motion in effective field of electrons vibration, rotation, translation

$$\hat{H}_e \Psi_m(\mathbf{r}, \mathbf{R}) = E_m(\mathbf{R}) \Psi_m(\mathbf{r}, \mathbf{R})$$

$$\hat{H}_R \chi_l(\mathbf{R}) = E_{VRT,l} \chi_l(\mathbf{R})$$

electron motion in the static field of nuclei electronic properties nuclei motion in effective field of electrons vibration, rotation, translation

je možné obdobným způsobem dále rozdělit na samostatné příspěvky vibrační, rotační a translační

$$E_{VRT,l} = E_{V,i} + E_{R,j} + E_{T,k}$$

Structure vs system state

Homework

1. What is the order of the dissociation energies of H_2 (hydrogen molecule), D_2 (deuterium molecule), and T_2 (tritium molecule)?

Focus on the ground state (1s+1s) only:

Help:

vibrations are quantized

$$E_{V} = \left(v + \frac{1}{2}\right)hv$$

vibrational quantum number 0,1,2,...

neglect rotation and translation (why?)

Total energy of the ground state:

$$E = E(r_o) + E_V(v=0)$$