C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 12 Quantum Chemistry I

PS/2020 Distant Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

C7790 Introduction to Molecular Modelling -1-

Context

macroworld microworld

states

(thermodynamic properties, G, T,…)

phenomenological thermodynamics

equilibrium (equilibrium constant) kinetics (rate constant)

free energy (Gibbs/Helmholtz)

Description levels (model chemistry):

quantum mechanics

- semiempirical methods
- ab initio methods
- post-HF methods
- DFT methods
- molecular mechanics
- coarse-grained mechanics

Simulations:

partition function

statistical thermodynamics

microstates

(mechanical properties, E)

• molecular dynamics

- Monte Carlo simulations
- docking
- …

microstate ≠ microworld

Method overview (model chemistry

R - position of atom nuclei R - position of atoms R - position of beads

Quantum chemistry I

Multi-electron systems

Approximations:

- ➢ Born-Oppenheimer approximation
- ➢ **One-electron approximation**
- ➢ **Basis functions**

Chemical system

Hamiltonian of chemical system consisting of *N* nuclei of mass *M* and charge *Z* and *n* electrons is given by:

approximation.

Schrödinger equation:

$$
\hat{H}\psi_k(\mathbf{r},\mathbf{R}) = E_k(\mathbf{R})\psi_k(\mathbf{r},\mathbf{R})
$$

Finding the solution

SE is complicated differential equation:

$$
\hat{H}\psi_k(\mathbf{r},\mathbf{R}) = E_k(\mathbf{R})\psi_k(\mathbf{r},\mathbf{R})
$$

(the devil is a kinetic operator)

- \triangleright Instead of searching for all possible solutions, lets focus on a ground state.
- \triangleright The ground state is the state with the lowest energy E_0 .
- \triangleright Since E_k are electronic states, it can be expected that for the most systems that the ground state will determine the essential behavior of the system.

$$
E_0 < E_1 < E_2 < \dots
$$

The ground state can be found be a variational method.

Alternative: a perturbation method.

Variational method

$H\psi_{k}(\mathbf{r}, \mathbf{R}) = E_{k}(\mathbf{R})\psi_{k}(\mathbf{r}, \mathbf{R})$ ˆ $H\psi_k(\mathbf{r},\mathbf{R})=E_k(\mathbf{R})\psi_k(\mathbf{r},\mathbf{R})$ differential form

The **variational method** employs variational calculus. The method essence is to find the local extreme of **functional**, which is the way how to transform functions on real numbers. Such a representation is the relationship between energy and wave function expressed in integral form:

$$
E(\mathbf{R}) = \frac{\int_{\Omega} \Psi^*(\mathbf{r}, \mathbf{R}) \hat{H} \Psi(\mathbf{r}, \mathbf{R}) d\tau}{\int_{\Omega} \Psi^*(\mathbf{r}, \mathbf{R}) \Psi(\mathbf{r}, \mathbf{R}) d\tau} \quad \text{integral form}
$$

integral form (fully equivalent to SE)

$$
d\mathbf{\tau} = d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{r}_3 d\mathbf{r}_4...d\mathbf{r}_n
$$

integrates across all electrons and the entire space Ω

Variational method

$$
E_k = E[\Psi_k] = \frac{\int \Psi_k^* \hat{H} \Psi_k d\tau}{\int \Psi_k^* \Psi_k d\tau} = \min!
$$

The wave function, which provides the minimum value of the integral, is a solution of the Schrödinger equation. **The global minimum of a functional is the energy of the ground state**, which implies:

$$
\begin{array}{|c|}\n \hline\n \Psi \neq \Psi_0 \\
E > E_0\n \hline\n \end{array}
$$

The inaccurate wave function always provides a higher value of energy.

Hartree-Fock method

Finding a wave function

Finding of wavefunction is practically impossible because it is a function of all electron positions. Possible simplification is **one-electron approximation**:

Hartree's method

$$
\Psi(r_1, r_2, ..., r_n) = \varphi_1(r_1)\varphi_2(r_2)... \varphi_n(r_n)
$$

Similar approach was employed for:

- \triangleright time-independent SE
- \triangleright BO approximation

Finding a wave function

Finding of wavefunction is practically impossible because it is a function of all electron positions. Possible simplification is **one-electron approximation**:

Hartree's method

$$
\Psi(r_1, r_2, ..., r_n) = \varphi_1(r_1)\varphi_2(r_2)... \varphi_n(r_n)
$$

Hartree's method does not consider important properties of multi-electron systems. Electrons are **indistinguishable fermions** (particles with half spin), which they must comply with **Pauli Exclusion Principle:**

no two indistinguishable fermions can be in the same quantum state

The wave function of the system must be **antisymmetric**. Antisymmetric wave functions can be obtained by all permutations between one-electron functions and spatial and spin coordinates.

Antisymmetric wave function:

$$
\Psi(r_1, r_2, \ldots, r_n, \sigma_1, \sigma_2, \ldots, \sigma_n) = -\Psi(r_1, r_2, \ldots, r_n, \sigma_2, \sigma_1, \ldots, \sigma_n)
$$

$$
\Psi(r_1, r_2, ..., r_n, \sigma_1, \sigma_2, ..., \sigma_n) = -\Psi(r_2, r_1, ..., r_n, \sigma_1, \sigma_2, ..., \sigma_n)
$$

spatial coordinates of electrons \blacksquare spin coordinates of electrons (z-component of spin)

One-electron approximation

Hartree-Fock method

spin part of one-electron function

Alternative notation: **Slater determinant**

$$
\Psi(r_1, r_2, \ldots, r_n, \sigma_1, \sigma_2, \ldots, \sigma_n) = \begin{vmatrix} \varphi_1(r_1) \chi_1(\sigma_1) & \varphi_2(r_1) \chi_2(\sigma_1) & \varphi_n(r_1) \chi_n(\sigma_1) \\ \varphi_1(r_2) \chi_1(\sigma_2) & \varphi_2(r_2) \chi_2(\sigma_2) & \varphi_n(r_2) \chi_n(\sigma_2) \\ \vdots & \vdots & \vdots \\ \varphi_1(r_n) \chi_1(\sigma_n) & \varphi_2(r_n) \chi_2(\sigma_n) & \varphi_n(r_n) \chi_n(\sigma_n) \end{vmatrix}
$$

One-electron functions

- \triangleright Even with one-electron approximation, finding one-electron functions is difficult.
- \triangleright Thus, one-electron functions are expressed using a linear combination of basis functions.
- ➢ This description is **exact** if we use **complete system of basis functions** (infinitely large set of orthonormal functions).
- \triangleright The problem is then reduced to finding linear coefficients c, which determine extent of given basis functions to searched one-electron functions.

Basis functions

 $c_i(\mathbf{r}_i) = \sum c_{ij} \chi_j(\mathbf{r}_i)$ $j=1$ *m* $\varphi_i(\mathbf{r}_i) = \sum_{j=1} c_{ij} \chi_j(\mathbf{r}_i)$ pre-defined basis functions

From a practical (numerical) point of view, it is necessary to use **limited number of basis functions**.

Basis function choice affects **speed** of calculation and **accuracy** of achieved results.

Basis set types:

- \triangleright atomic orbitals (atom centered) are usually derived from simplified SE solution for hydrogen atom
	- \triangleright GTO Gaussian Type Orbital
	- ➢ STO Slater Type Orbital (more accurate but more complicated)
- \triangleright plane waves solid state physics

HF method

The HF method tries to find such *c*, which minimizes energy functional.

one-electron molecular orbitals
\n
$$
\varphi_i(\mathbf{r}_i) = \sum_{j=1}^m C_{ij} \chi_j(\mathbf{r}_i)
$$
\n
$$
\text{oscupied orbitals}
$$
\nsystem WF
\n
$$
\Psi_0(r_1, r_2, ..., r_n, \sigma_1, \sigma_2, ..., \sigma_n) = \sum_{P} sign(P) \{\varphi_1(r_1) \chi_1(\sigma_1) \varphi_2(r_2) \chi_2(\sigma_2)...\varphi_n(r_n) \chi_n(\sigma_n)\}
$$
\n
$$
\downarrow
$$
\nvariational method
\n
$$
E_0 = E[\Psi_0] = \min!
$$

RHF method

RHF - (**Restricted Hartree-Fock Method**) is applicable to closed systems (closed shell systems), where each molecular orbital contains exactly two electrons with opposite spin. Using the variational method, one-electron approximation and linear combination of basis functions, the solution can be found solving a generalized eigenproblem:

$$
\mathbf{Fc}_i = \varepsilon_i \mathbf{Sc}_i
$$

The solution is m (basis set size) of eigenvalues e and vectors **c**. Eigenvalues e represent the energy of one-electron functions (orbitals).

Summary

➢The HF method is starting point for other QM methods

- \triangleright HF is a variational method
- \triangleright It uses two approximations:
	- ➢one-electron approximation (very bad approximation)

➢**correlation energy** (post-HF methods)

 \triangleright finite number of basis functions

 \triangleright correction is possible by extrapolation to a complete basis

Correlation energy

correlation energy – it is not included in the HF method **because one-electron approximation**

> correlation energy is always negative because electron repulsion is overestimated by the HF method

Quantum chemical methods

Method classification

Quantum chemistry

time-independent Schrödinger equation

$$
\hat{H}_{e}\psi_{k}(\mathbf{r},\mathbf{R})=E_{k}(\mathbf{R})\psi_{k}(\mathbf{r},\mathbf{R})
$$

scaling, time complexity: http://en.wikipedia.org/wiki/Time_complexity

- HF Hartree–Fock method, DFT density theory functionals,
- CI configuration interaction method, MP Møller–Plesset perturbation method,
- CC coupled-clusters method, N number of basis functions

Jensen, F. Introduction to computational chemistry; 2nd ed.; John Wiley & Sons: Chichester, England; Hoboken, NJ, 2007.

QM method overview

Classification by theoretical approaches and approximations:

- empirical methods
	- extended Hückel method (EHT)

 \bullet

- semi-empirical methods
	- AM1
	- PM3, PM6, PM7

 \bullet ...

- *ab initio* **methods**
	- Hartree-Fock (HF) method
	- post-HF methods
		- Møller-Plesset method (MP2, MP3, ...)
		- coupled-clusters method (CC)

 \bullet ...

- **density functional theory (DFT)**
	- LDA
	- GGA (BLYP, TPSS, PBE, ...)
	- hybrid (B3LYP, M06-2X, ...)

Method designation

energy and property calculations are performed on the geometry (structure), which was obtained by geometry optimization at the same level of theory

energy and property calculations geometry optimization