C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 13 Potential Energy Surface I

PS/2020 Distant Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

C7790 Introduction to Molecular Modelling -1-

Context

macroworld microworld

states

(thermodynamic properties, G, T,…)

phenomenological thermodynamics

equilibrium (equilibrium constant) kinetics (rate constant)

free energy (Gibbs/Helmholtz)

Description levels (model chemistry):

- quantum mechanics
	- semiempirical methods
	- ab initio methods
	- post-HF methods
	- DFT methods
- molecular mechanics
- coarse-grained mechanics

Simulations:

partition function

statistical thermodynamics

microstates

(mechanical properties, E)

• molecular dynamics

- Monte Carlo simulations
- docking
- …

microstate ≠ microworld

t $\hat{H} \phi(\mathbf{x}, t) = i\hbar \frac{\partial \phi(\mathbf{x}, t)}{\partial t}$ ∂t $\partial \phi(\mathbf{x},t)$ $=i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial \phi(\mathbf{x},t)}$ $\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial \mathbf{x}}$

time dependent Schrödinger equation

t t $H\phi(\mathbf{x},t) = i$ \widehat{O} \widehat{O} = $({\bf x}, t)$ $\hat{H} \phi({\bf x},t)$ **x x** ϕ ($\not{\hspace{-.1cm}\varphi}({\bf x},t) = i\hbar$

time dependent Schrödinger equation

time independent Schrödinger equation

 $\phi(\mathbf{x},t) = \psi(\mathbf{x}) f(t)$

 $\hat{H}\psi_{k}(\mathbf{x}) = E_{k}\psi_{k}(\mathbf{x})$ $H\psi_{k}(\mathbf{x}) = E_{k}\psi_{k}(\mathbf{x})$

system can exist in several quantum states, each state is described by wavefunction ψ_k and has energy E_k

electron motion in the static field of nuclei electronic properties

nuclei motion in effective field of electrons vibration, rotation, translation

Hydrogen molecule

HW: What is the dissociation energy of H_2 , D_2 , and T_2 ?

$$
H_2 \longrightarrow H' + H'
$$
\n
$$
\Delta G_r = ? \longrightarrow \text{approximation}
$$
\n
$$
\Delta E_r = ? \longrightarrow \text{do not consider thermal effects}
$$

$$
\hat{H}_e\Psi_m(\mathbf{r},\mathbf{R}) = E_m(\mathbf{R})\Psi_m(\mathbf{r},\mathbf{R})
$$

Energy is a function of nuclei positions.

The function and its projections to lower dimensional configurational spaces are called potential energy surface.

What is the potential energy surface for H_2 , D_2 , and T_2 ? Do they differ?

H2 - Potential Energy Surface

ˆ $e^{\Psi_m}(\mathbf{r}, \mathbf{R}) \neq E_m(\mathbf{R}) \Psi_m(\mathbf{r}, \mathbf{R})$

dissociated state

What is the energy of dissociated state? How is it related to reference states?

Two suitable reference states:

- ➢ **standard QM reference state** (infinite separation of electrons and nuclei, no kinetic energy) - negative energy
- ➢ **dissociated state** is considered as a reference with zero energy

Recall Hamiltonian of chemical system

Hamiltonian of chemical system consisting of *N* nuclei of mass *M* and charge *Z* and *n* electrons is given by:

$$
\hat{H}\psi_k(\mathbf{r},\mathbf{R}) = E_k(\mathbf{R})\psi_k(\mathbf{r},\mathbf{R})
$$

Nuclei motion (nuclei mass) is not considered in the BO approximation.

H2 , D² , T2 - Potential Energy Surface

Potential energy surfaces are the same! r0 is the same as well.

Reason:

All three systems are chemically identical (two electrons and two +1 charged nuclei).

H2 , D² , T2 - Potential Energy Surface

What about vibrations? Do they contribute and how?

Consider harmonic oscillator (approximation):

characteristic frequency

$$
E_V = \left(v + \frac{1}{2}\right) hv
$$

non-zero energy even in the ground vibration state!!!

 $v = 0, 1, 2, ...$

C7790 Introduction to Molecular Modelling -10-

H2 , D² , T2 - Vibrations

Harmonic oscillator:

H2 , D² , T2 - Vibrations

Harmonic oscillator:

characteristic frequency
\n
$$
E_V = \left(v + \frac{1}{2}\right) hv
$$
 $v = \frac{1}{2\pi} \sqrt{\frac{K}{\mu}}$ force constant; does it differ?
\nreduced mass (clearly this differs among
\n H_2 , D_2 , and T_2)

What about the force constant?

H2 , D² , T2 - PES + Vibrations

bigger mass -> smaller frequency -> lower energy

Structure *vs* **system state**

Method overview (model chemistry

Quantum vs Classical description

- ➢ **Fully QM**
- ➢ QM, MM + **QM harmonic approximation**, or similar
- ➢ QM, MM + **path integral molecular dynamics**

thermal energy not shown in graphs is $1/2k_BT$ (equipartition principle) in all cases (fully quantum/classical)

Potential Energy Surface Potential Energy Surface Potential Energy Surface $H₂$ D_{2} T_2 \triangleright QM, MM, CG + classical nuclei/atom motions, ш ш Ш molecular dynamics ΔE_r ΔE_r ΔE_r (MD) r_0 r_0 r_0 \mathbf{r} \mathbf{r} r

NO DIFFERENCE

C7790 Introduction to Molecular Modelling -17-

Summary

- \triangleright PES cannot describe mass effect of nuclei; it only describes electronic effects.
- \triangleright Isotope effects can be measured experimentally
	- \triangleright Primary Isotope Effect (kinetics)
	- \triangleright Secondary Isotope Effect (kinetics)
	- \triangleright It can be even tasted by your tongue, see:

Ben Abu, N.; Mason, P. E.; Klein, H.; Dubovski, N.; Ben Shoshan-Galeczki, Y.; Malach, E.; Pražienková, V.; Maletínská, L.; Tempra, C.; Chamorro, V. C.; Cvačka, J.; Behrens, M.; Niv, M. Y.; Jungwirth, P. Sweet Taste of Heavy Water. *Communications Biology* **2021**, *4* (1), 1–10. [https://doi.org/10.1038/s42003-021-01964-y.](https://doi.org/10.1038/s42003-021-01964-y)