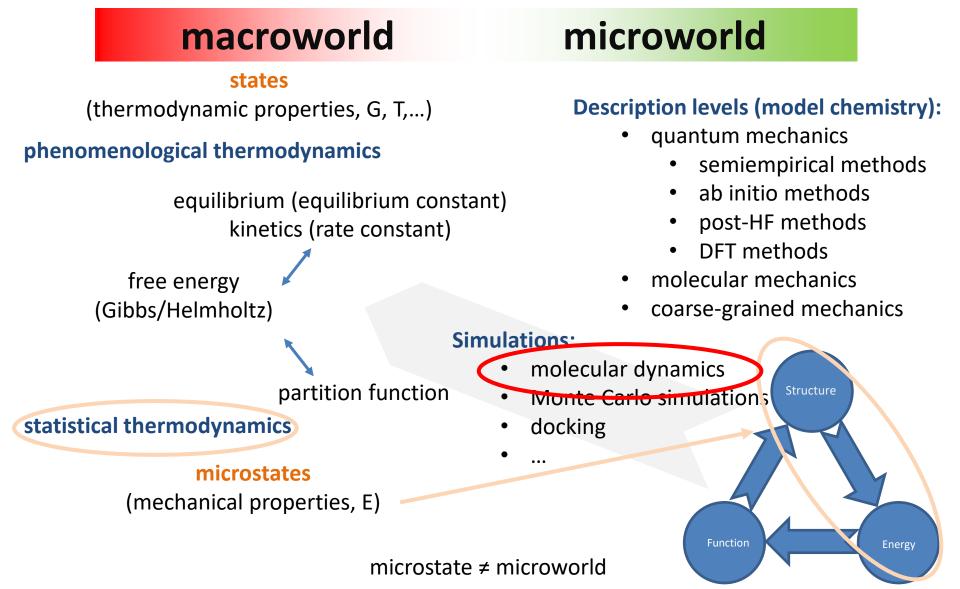
C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

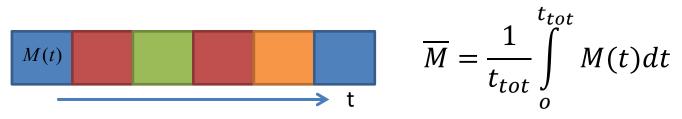
Lesson 26 Molecular Dynamics I

PS/2020 Distant Form of Teaching: Rev1


Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno


C7790 Introduction to Molecular Modelling

Context

System Evolution in Time

How to simulate time evolution of the system?

snapshots of the system are a microstates

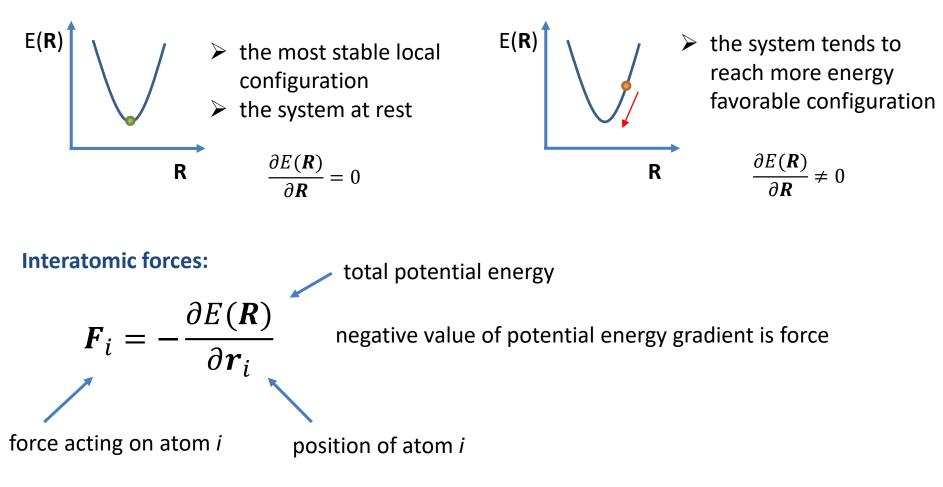
Mechanical Description (classical physics)*:

Newton's laws of motion

the system is composed of N atoms

- First law states that an object at rest will stay at rest, and an object in motion will stay in motion unless acted on by a net external force.
- Second law states that the acceleration of a body over time is directly proportional to the force applied and occurs in the same direction as the applied force.

$$\boldsymbol{F}_i = m_i \boldsymbol{a}_i$$


Third law states that all forces between two objects exist in equal magnitude and opposite direction.

* time evolution can also be described by QM but at cost of theoretical and computational complexity

Forces

The only forces that can act on atoms in the system are from interatomic interactions.

Origin of interatomic forces:

Equation of Motions

Forces in molecular systems Second Newton's Law $\boldsymbol{F}_i = -\frac{\partial E(\boldsymbol{R})}{\partial \boldsymbol{r}_i}$ $\boldsymbol{F}_i = m_i \boldsymbol{a}_i$ Final equations of motions (EM): $m_i \boldsymbol{a}_i = -\frac{\partial E(\boldsymbol{R})}{\partial \boldsymbol{r}_i}$ $m_i \frac{d^2 \boldsymbol{r}_i}{dt^2} = -\frac{\partial E(\boldsymbol{R})}{\partial \boldsymbol{r}_i}$

To describe evolution of the system in time, it is necessary to solve system of N (number of atoms) second order differential equations or motions.

Result: position of atoms in time (trajectory)

$$\mathbf{R}(\mathbf{t}) = \{\mathbf{r}_1(t), \mathbf{r}_2(t), \dots, \mathbf{r}_N(t)\}$$

Numerical Integration

The solution of EM can be obtained by integration of differential equations. Unfortunately, the analytical solution is not feasible even for small systems (three and more atoms).

Numerical integrations

- Finite difference methods
 - leap-frog algorithm (a variant of Verlet algorithm)
 - velocity Verlet algorithm
- Gear corrector-predictor methods
- Runge-Kutta methods

most often used algorithms in MD simulations of (bio)chemical systems

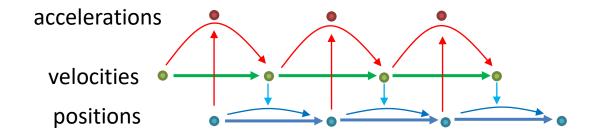
Leap-frog algorithm

1) Initial conditions:

r(t); v(t - dt/2)

- 2) Molecular dynamics (MD loop)
 - 1) Calculation of forces and accelerations

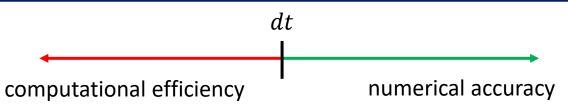
$$\boldsymbol{a}(t) = \frac{1}{m} \frac{\partial E(\boldsymbol{R}(t))}{\partial \boldsymbol{r}}$$


2) Update velocities

$$\boldsymbol{v}(t+dt/2) = \boldsymbol{v}(t-dt/2) + \boldsymbol{a}(t) \cdot dt \qquad \boldsymbol{a}(t) = \frac{\boldsymbol{v}(t+dt/2) - \boldsymbol{v}(t-dt/2)}{dt}$$

1) Update positions

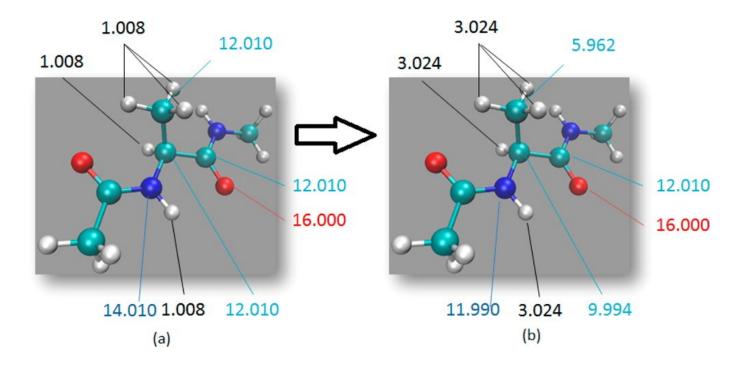
$$\boldsymbol{r}(t+dt) = \boldsymbol{r}(t) + \boldsymbol{v}(t+dt/2) \cdot dt$$


$$v(t+dt/2) = \frac{r(t+dt) - r(t)}{dt}$$

C7790 Introduction to Molecular Modelling

 $t \sim time$ $dt \sim time step (integration step)$

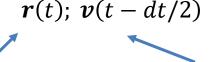
Time Step


- ➤ The time step size is usually taken as 1/10 of the fastest motions.
- > The fastest motions are X-H vibrations (higher PES curvature, light atom (hydrogen)).
- > Then, the typical size of the integration step is 1 fs (10^{-15} s)

Strategies how to increase the integration time step:

- remove the fastest motions by the constraining X-H distances, which allows a 2-fs step size
 - > SHAKE, RATTLE, SETTLE, LINCS algorithms
- in addition, constrain valence angles (mathematically too complex, not use)
- hydrogen mass repartitioning (up to 4 fs)
- multiple time-step integrators
 - computationally cheap short-range forces (shorter integration time step)
 - computationally expensive long-range forces (longer integration time step)

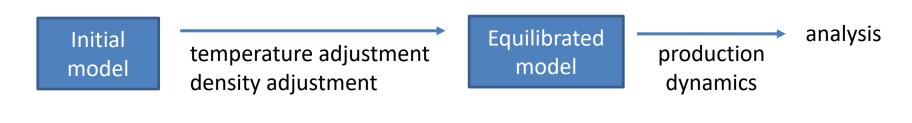
HMR - Hydrogen Mass Repartitioning


Since the molecular dynamics uses the classical physics, each degree of freedom is thermalized to $\frac{1}{2}k_BT$, which is independent to atom masses.

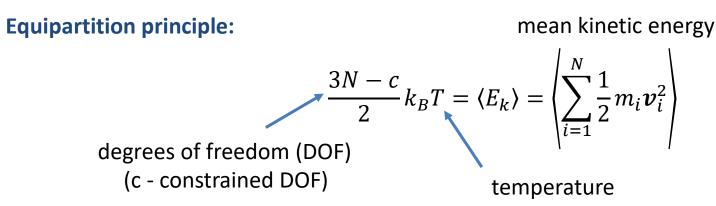
Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. *J. Chem. Theory Comput.* **2015**, *11* (4), 1864–1874. <u>https://doi.org/10.1021/ct5010406</u>.

Initial Conditions, Equilibration

For integration of EM, we need **initial geometry and velocities**:

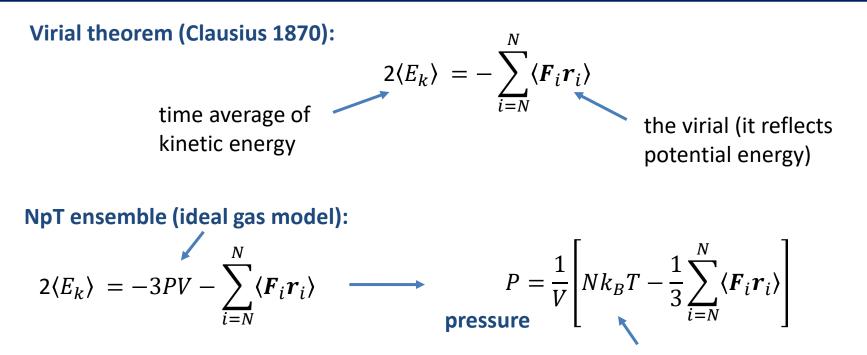

velocities can be generated randomly to satisfy Maxwell-Boltzmann distribution for given temperature

initial geometry (structure) of model


The initial geometry of models derived from experimental structures (X-RAY, NMR, CryoEM, etc.) is usually of low quality.

Equilibration:

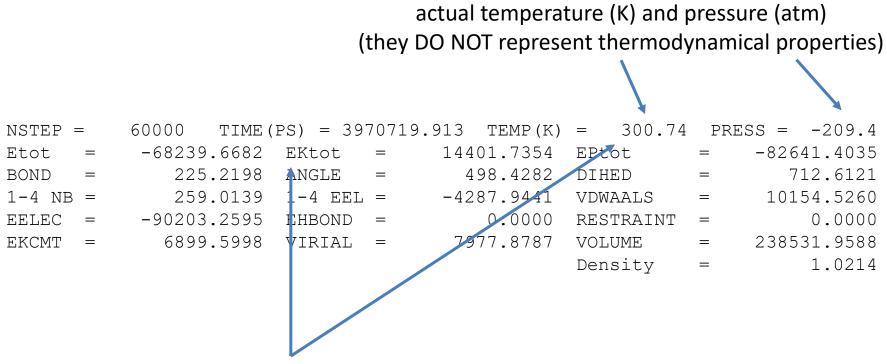
The aim of the equilibration is to bring model to desired thermodynamic state (temperature, pressure, density, etc.).


Thermostats

The temperature can be controlled by a thermostat:

- weak coupling thermostat, Berendsen thermostat
 - simple, incorrect ensemble
 - temperature is controlled by velocity scaling
 - dangerous to use for simulations in vacuum
 - susceptible to various artefacts (flying ice cube, etc.)
- Langevin thermostat (stochastic, correct ensemble)
 - it thermalizes each degree of freedom by random collisions
- Nosé-Hoover barostat (correct ensemble)

Barostats


from equipartition principle

The pressure can be controlled by a barostat:

- weak coupling barostat (simple, incorrect ensemble)
- Monte-Carlo barostat (stochastic, correct ensemble)
- Nosé-Hoover barostat (correct ensemble)

the pressure change is achieved by changing the size of the simulation box.

Output from MD

the same property, which is the actual kinetic energy, expressed in different units

Output from MD, cont.

Thermostat: T = 300 K (weak coupling) Barostat: p = 1 atm (weak coupling)

thermodynamic temperature (K) and pressure (atm)

AVERAGES O	VER					
NSTEP = 5000000 T	IME(PS) = 399	90599.911	TEMP(K)	= 299.90	PRES	SS = 2.0
Etot = -68232.23	253 EKtot	= 14	361.2461	EPtot	=	-82593.4714
BOND = 248.6	326 ANGLE	=	517.2225	DIHED	=	724.2102
1-4 NB = 253.7	846 1-4 EEL	= -4	299.0145	VDWAALS	=	10259.0679
EELEC = -90297.3	769 EHBOND	=	0.0000	RESTRAINT	=	0.0023
EAMBER (non-restrain	t) = -825	593.4736				
EKCMT = 6859.7	668 VIRIAL	= 6	5849.2815	VOLUME	=	238422.2094
				Density	=	1.0219
RMS FLUCTUA	TIONS					\frown
	TIONS IME(PS) = 399	90599.911	. TEMP(K)	= 1.53	PRES	5S = (153.2)
	IME(PS) = 399	90599.911 =	TEMP(K) 73.4906	= 1.53 EPtot	PRES =	5S = (153.2) 75.4230
NSTEP = 5000000 T	IME(PS) = 399 060 EKtot					
NSTEP = 5000000 T Etot = 17.0	IME(PS) = 399 060 EKtot 980 ANGLE	=	73.4906	EPtot	=	75.4230
NSTEP = 5000000 T Etot = 17.0 BOND = 12.9	IME(PS) = 399 060 EKtot 980 ANGLE 275 1-4 EEL	=	73.4906 16.9666	EPtot DIHED	=	75. <u>4230</u> 10.9737
NSTEP = 5000000 T Etot = 17.0 BOND = 12.9 1-4 NB = 5.9	IME(PS) = 399 060 EKtot 980 ANGLE 275 1-4 EEL 253 EHBOND	= = =	73.4906 16.9666 19.2799	EPtot DIHED VDWAALS	= = =	75.4230 10.9737 126.9605
NSTEP = 5000000 T Etot = 17.0 BOND = 12.9 1-4 NB = 5.9 EELEC = 159.5	IME(PS) = 399 060 EKtot 980 ANGLE 275 1-4 EEL 253 EHBOND t) =	= = =	73.4906 16.9666 19.2799	EPtot DIHED VDWAALS	= = =	75.4230 10.9737 126.9605