Heterogeneous catalysis

Lecture 5 Catalysts characterization

Catalyst characterization

- Outline
 - DRUV
 - XPS
 - XANES & EXAFS
 - Chemisorption
 - ToF-SIMS

Diffuse reflectance UV-Vis spectroscopy (DRUV)

- Is there any link between reflectance and absorbance?
- Yes, there is!
- Kubelka-Munk model allows to obtain quantitatively the absorption spectrum of a solid from diffuse reflectance measurement (theory behind in textbooks)

Diffuse reflectance UV-Vis spectroscopy (DRUV)

- LMCT = ligand-to-metal charge transfer
- MLCT = metal-to-ligand charge transfer
- MMCT = metal-to-metal charge transfer

Diffuse reflectance UV-Vis spectroscopy (DRUV)

Isolated and polymerized $V_x O_y$?

TABLE 4: Band Maxima and Edge Energies of V-Reference Compounds

compounds	band max. (nm)	E_{g} (eV)	molecular structure ^a
V ₂ O ₅	236, 334, 481	2.3	polymerized VO5/VO6
MgV ₂ O ₆ (meta-vanadate)	250, 370	2.8	polymerized VO ₆
NaVO ₃ (meta-vanadate)	281, 353	3.2	polymerized VO ₄
NH ₄ VO ₃ (meta-vanadate)	288, 363	3.2	polymerized VO ₄
Mg ₂ V ₂ O ₇ (pyro-vanadate)	280	3.5	dimeric VO ₄
Mg ₃ V ₂ O ₈ (ortho-vanadate)	260, 303	3.5	isolated VO ₄
Na ₃ VO ₄ (ortho-vanadate)	253, 294	3.9	isolated VO ₄

Gao et al., J. Phys. Chem. B 102 (1998) 10842.

Ionization Spectroscopies

Photoelectron spectroscopy: UV: valence shell ionizations

X-ray: core electron ionizations (XPS, XANES, EXAFS):

$$E_{photon} = hv =$$

BE + kinetic energy (KE)

Photoelectron Spectroscopy analyzes the energies of the ionized electrons (XPS).

X-ray Absorption Spectroscopy analyzes the absorption curve of the X-ray spectrum associated with ionization of a core electron (XANES and EXAFS)

We measure the number and the energy of photoelectrons emitted from the surface layer

- Number of photoelectrons gives access to quantity
- Energy of photoelectrons gives access to quality
- Depth? 5–20 nm.

• Surface vs. bulk composition

Figure 6. Surface Re/(Si + Al + Re) atomic ratios (XPS, gray bars) and bulk Re/(Si + Al + Re) atomic ratios (EDX, black squares) for xerogels and calcined catalysts. Reproduced with permission from [177]. Copyright Elsevier, 2013.

Oxidation state

• Who will hold its electrons more powerfully? C^0 or C^{IV} ?

Oxidation state

- Why do we talk about carbon?
- Surface of each sample contains some carbon impurities = Adventitious carbon = calibration of BE

Oxidation state

Similar consideration:

 SiO_4 vs. $CSiO_3$

Ta(OSi)_x(OTa)_{6-x} vs. Ta(OTa)₆

- Spin-orbital interaction and other electron interactions lead to additional features in XP spectra characteristic for
 - Oxidation states
 - Groups
 - Characteristic for Mn²⁺

- Spin-orbital interaction and other electron interactions lead to additional features in XP spectra characteristic for
 - Oxidation states
 - Groups

Ionization Spectroscopies

Photoelectron spectroscopy: UV: valence shell ionizations

X-ray: core electron ionizations (XPS, XANES, EXAFS):

$$E_{photon} = hv =$$

BE + kinetic energy (KE)

Photoelectron Spectroscopy analyzes the energies of the ionized electrons (XPS).

X-ray Absorption Spectroscopy analyzes the absorption curve of the X-ray spectrum associated with ionization of a core electron (XANES and EXAFS)

XANES and EXAFS

In XANES and EXAFS we measure number and energy of transmitted photons, which caused ionization of a core electron (i.e. absorbance vs. energy)

XANES and EXAFS

- XAS: X-ray **absorption** spectroscopy; alternatively XAFS: X-ray **absorption** fine structure
 - XANES: X-ray absorption near edge structure (pre-edge); alternatively NEXAFS (near edge x-ray absorption fine structure)
 - EXAFS: Extended x-ray absorption fine structure (= behind edge)

What is an edge?

XANES and EXAFS

thus be used to probe chemical bonding.

(a) (X-ray energy)

XANES

FIG. 2. Normalized pre-edge height vs energy position for Ti K-pre-edge features in model compounds listed on Table I showing three domains for fourfold, fivefold, and sixfold coordinated Ti.

- Qualitative information on coordination environment (dipole selection rules apply)
 - Is there a pre-edge feature?
 - Yes no inversion center
 - No there is an inversion center
- Quantitative info also possible
- Figure from Farges, et. al.
 Physical Review B: Condens. Matter 1997, 56(4), 1809-1819.

XANES

Coordination environment

XANES

 Position of the edge...binding energy...oxidation state

EXAFS

• The scattering phenomena

- Structure elucidation of an amorphous material!
- If more Ti sites, than average; analysis more difficult!

- Interactions of A,B, and P with catalyst not too weak, not too strong
 (- physi/shomicorption on satalyst surface)
 - (= physi/chemisorption on catalyst surface)

Sabatier's principle; Volcano plot@Lecture 1

Figure 2.15 Examples of volcano plots, describing the reaction rate as a function of the heat of adsorption (*left*), and the activity of the second-row and third-row transition metal sulfides in the hydrodesulfurization of dibenzothiophene (*right*).

- Different sites = different probes
 - Acid sites
 - NH₃, alkylamines, pyridine, 2,6-dimethylpyridine, CO
 - Basic sites
 - CO₂
 - Redox
 - H₂, O₂, N₂O
 - Reactants can be used as probes
 - e.g. ethanol dehydration = I can study chemisorption of ethanol

- Different ways how to do it
 - Volumetric
 - Thermally programmed desorption/oxidation/reduction
 - Pulse titration
 - Chemisorption of IR (NMR) active molecules and their analysis by IR (NMR)

- Volumetric
 - Similar to N₂ physisorption (glass tube of known volume, addition of known volume of gas, pressure measurement)
 - NH₃ adsorption isotherms measured twice, sample evacuated between the two measurements (physisorption vs. chemisorption)
 - High temperatures in contrary to N₂ physisorption (e.g. 50 °C)

Temperature?

• Volumetric

 Thermally programmed desorption/oxidation/reduction

 Thermally programmed desorption/oxidation/reduction

• Thermally programmed ...

Pulse titration

F10. 1. Schematic of the flow system. F = "Moore" flow controller, N.V. = needle valve, D = thermal conductivity detector, B = glc backflush valve, I = 6-port "Varian" sample-injector, S - sample loop, R = rotameter. The setup for hydrogen adsorption is shown. Prereduction was carried out with the valve B in its alternate position. Oxygen chemisorption was studied by replacing the hydrogen source with oxygen.
Pulse titration

- Pulse titration
 - Correct choice of gas (H₂, CO, O₂, N₂O)
 - Correct choice of temperature
 - = Monolayer
 - = Dispersion, particle size, "active metal surface area"

- Pulse titration
 - Very good correlation can be observed between active surface area by H₂ chemisorption and activity in hydrogenation of ... for classical hydrogenation catalyts (Pt, Pd)
 - H₂ chemisorption is **dissociative**!

- H–H bond breaks at the time of chemisorption, this is the key to high reactivity (adsorbed molecular hydrogen)
- This is Langmuir's chemistry

• X₂ dissociative chemisorption (detour)

 O_2 adsorption on Pt(111) surface @165 K O-O in O_2 = 1.2Å, here much longer

- Pulse titration
 - Very good correlation can be observed between active surface area by H₂ chemisorption and activity in hydrogenation of ... for classical hydrogenation catalyts (Pt, Pd)

- BUT

 Example: methanol synthesis over Cu NPs $-CO_2 + 2H_2 \rightarrow CH_3OH$

Science 18 May 2012: Vol. 336, Issue 6083, pp. 893-897

• Example: methanol synthesis over Cu NPs

• Example: methanol synthesis over Cu NPs

Fig. 3. (**A** to **D**) Aberration-corrected HRTEM images of Cu particles in the conventionally prepared, most-active Cu/ZnO/Al₂O₃ catalyst. (D) is a close-up of the marked area in (C).

• Example: methanol synthesis over Cu NPs

 Pulse titration 	Pulse	TCD signal
– Homework	#1	0
	#2	0
 — Silver (2.2 wt% on silica) 	#3	0
	#4	0
 Surface reaction: 	#5	0
$2Ag_{surf} + O_2 \rightarrow 2AgO_{surf}$		
	#28	0
<pre>@T = 170 C (no bulk oxidation!)</pre>	#29	0
0 5021	#30	0.002
$-m_{sample} = 0.5021 g$	#31	0.005
$V_{pulse} = 0.00925 \text{ cm}^3 \text{ O}_2 @ \text{RT} @ 1 \text{ atm}$	#32	0.011
	#33	0.016
Max TCD signal = 0.022	#34	0.019
	#35	0.021
-D = ?	#36	0.022

- Adsorption of IR (NMR) active molecules
 - Pyridine and its derivatives
 - CO
 - Trialkylphosphine oxides

— ...

- Adsorption of IR (NMR) active molecules
 - Number of sites
 - Lambert-Beer law
 - Strength of sites
 - Desorption under vacuum at different temperatures
 - Nature of sites
 - Different vibration modes

- Adsorption of IR (NMR) active molecules
- Example: pyridine adsorption on an acid catalyst

- Adsorption of IR (NMR) active molecules
- Example: CO adsorption on MgO, a catalyst that activates methane for oxidation, ideal products are ethane and ethylene

$$-2 \operatorname{CH}_4 + 0.5 \operatorname{O}_2 \rightarrow \operatorname{C}_2\operatorname{H}_6 + \operatorname{H}_2\operatorname{O}$$

$$-2 \operatorname{CH}_4 + \operatorname{O}_2 \rightarrow \operatorname{C}_2 \operatorname{H}_6 + 2 \operatorname{H}_2 \operatorname{O}$$

$$\begin{array}{c|c} H^{\delta-} \cdots C^{\delta+} H_3 \\ \hline Hg O Mg O Mg O \end{array}$$

Angew. Chem. Int. Ed. 2015, 54, 3465-3520

Example: CO adsorption on MgO

• Example: CO adsorption on MgO

- Example: CO adsorption on MgO
- Single step edge is the active site
 - Good correlation between integral of absorption band at 2147 cm⁻¹ and catalytic activity
 - Band at 2147 cm⁻¹ represents single step edge
 - Au atoms selectively deposits on single step edges (observed by HR-TEM) = catalyst poisoning, active site "titration"

ToF-SIMS

- Time of flight secondary ion mass spectrometry
- Catalyst surface bombarded by "primary" ions (e.g. Bi₅⁺)
- Surface atoms (top ≈1 nm) expelled by this bombardment forming charged clusters = secondary ions created
- Analysis of secondary ions gives us information about catalyst surface

ToF-SIMS

- Surface composition
 - AlO_2^- is a function of Al concentration in top 1 nm
 - AlSiO₃⁻ is a mixed Al-Si cluster (good Al dispersion)
 - $Al_2O_4^-$ signifies badly dispersed Al species

Catalyst characterization

- Outline
 - DRUV
 - XPS
 - XANES & EXAFS
 - Chemisorption
 - ToF-SIMS