Heterogeneous catalysis

Lecture 9 Zeolites in oil refinement

Zeolites - synthesis

- Reaction mixture: ..., ..., ..., ...
 - pH adjustment, (gelation)
 - Hydrothermal treatment in an autoclave
 - ...
 - ...
- **Result:** H-zeolite (Brønsted acidic with H⁺ ions)

Zeolites - synthesis

- Reaction mixture: Na₂SiO₃, Al₂O₃, quarternary ammonium salt (=structure directing agent), water
 - pH adjustment, (gelation)
 - Hydrothermal treatment in an autoclave
 - Ion exchange (Na⁺ for NH_4^+)
 - Calcination (= NH_3 removal)
- **Result:** Crystalline H-zeolite (Brønsted acidic with H⁺ ions)

Zeolites - synthesis

• Pore size

• Si/Al ratio ≥ 1

- Brønsted: ...
 - Structure:

- Lewis: ...
 - Structure:

- **Brønsted:** negative charge of the aluminosilicate net balanced by strongly acidic protons
 - Structure:

 Lewis: Al atoms that are not embedded in the aluminosilicate net (e.g. surface species, amorphous stuff, alumina particles) = extraframework aluminum species (EFAL)

• **Brønsted:** depends on the second coordination sphere (i.e. Si/Al ratio)

- Lewis: Extraframework aluminum species (EFAL) depends on
 - Si/Al ratio
 - Aging (time on stream, steaming)
 - Can be washed out (depending on pH acid washing)

• High Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites

• Low Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites

• High Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites

- Weak Lewis acid sites

• Low Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites

Confinement effect

• Superacidity

- Various probes at RT acid site strength similar to 70 % H_2SO_4 (=NO!)
- Ability to protonate hydrocarbons at working conditions (=YES!)
- ?

Zeolites – diffusion/shape selectivity

- Diffusion
 - Big difference between zeolites with 8 membered vs. 12 membered ring pore openings
 - Big difference between zeolites with 1D, 2D, and 3D-connected pore structure
- Shape selectivity

- Fluid catalytic cracking
- Isobutane-butene alkylation
- Reforming (+ steam reforming)
- Hydrocracking
- Linear paraffin isomerization

DOI: 10.1039/c3cs60394f

• Fluid catalytic cracking

Chem. Soc. Rev., 2015, 44, 7342-7370

- Fluid catalytic cracking
 - Zeolite Y 10-50 wt%
 - Binders 50-90 wt%
 - At the beginning $AICI_3$
 - Addition of HZSM-5

Chem. Soc. Rev., 2015, 44, 7342-7370

- Fluid c - Sho
 - Ison – "Arc
 - HZS

• Fluid catalytic cracking

- Protonation + protolytic cracking
- H^- abstraction + β scission

 $\begin{array}{c} \textbf{ZH} \\ \textbf{CH}_3\textbf{-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{CH}_3 \end{array} \xrightarrow{1} \begin{array}{c} \textbf{Z}^{\circ} \\ \textbf{CH}_3\textbf{-}\textbf{C}^{\circ}\textbf{H}_3\textbf{-}\textbf{CH}_2\textbf{-}\textbf{C}} {-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{C}} {-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{C}} {CH}_2\textbf{-}\textbf{C}} {-}\textbf{CH}_2\textbf{-}\textbf{CH}_2\textbf{-}\textbf{C} \textbf{L}_2\textbf{-}\textbf{C} \textbf{L}}2\textbf{-}\textbf{C} \textbf{L}2\textbf{-}\textbf{C} \textbf{L}2\textbf{-}$

Chem. Soc. Rev., 2015, 44, 7342-7370

• Fluid catalytic cracking

- Protonation + protolytic cracking
- H^{-} abstraction + β scission

• Fluid catalytic cracking

- Protonation + protolytic cracking
 - We need strong Brøsted acid sites (zeolite Y)
- H^- abstraction + β scission
 - We need strong Lewis acid sites (steamed/(acid washed) zeolite Y)
- Long linear hydrocarbons diffusion
 - Precracking on alumina and silica-alumina (non-innocent binders)
 - Hierarchical porosity in zeolites (steamed/(acid washed) zeolite Y)

Isobutane-butene alkylation

- We want highly branched C8 hydrocarbons (high octane number)
- HF and H₂SO₄ catalyzed alkylation still running in industry
- Large pore zeolites as a substitution

Isobutane-butene alkylation

- Large pore zeolites as a substitution
- BUT! 2-butene dimerization...oligomerization...coking...deactivation

Zeolite	USY	Beta	Mordenite	ZSM-5	MCM-22
2-Butene conv. (%)	100	97	94	100	95
C ₈ (wt%)	40.9	50.6	70.2	83.5	33.0
Trimethylpentanes	74.1	76.9	76.9	20.9	36.9
2,2,4-Trimethylpentane	37.7	52.4	57.2	27.3	4.1

Table 1 Activity and selectivity of some acid zeolites as alkylation catalysts

• Linear paraffin isomerization

- − Linear C8 (C7) \rightarrow branched C8 (C7)
- Requires strong Brønsted acidity and hydrogenation/dehydrogenation activity (Pt(Ni) on mordenite)
- Mordenite large pore, monodirectional pores
- Mordenite dealuminated (strong H⁺), acid washed (low EFAL)
- Protonation = carbocations
- Stability of carbocations? Branched hydrocarbons?

• Linear paraffin isomerization

- Pt(Ni) on mordenite
- How do we deposit Pt on a zeolite? (Lecture 3)

• Linear paraffin isomerization

- Pt, Pd, Ni on mordenite
- Electrostatic interaction = Ion exchange
 - Competitive ion exchange

Linear paraffin isomerization

- Pt, Pd, Ni on mordenite
- Electrostatic interaction = Ion exchange
 - Competitive ion exchange

10⁴v, (mole h⁻¹ g⁻¹ of Pt/HUSY) G.D. P.D. V GD T (°C) IPD 230 39 250 180 70 2.6 2.3 260 140 317 2.2 270 280 613 280 540

ISOMERIZATION OF N-HEXANE ON Pt/HUSY

G.D. : good distribution

P.D.: poor distribution

- Hydrocracking (i.e. cracking in the presence of H₂)
 - Shortening of long hydrocarbons
 - From linear to branched (alkylation, carbocations,...)
 - Hydrogenation/dehydrogenation
 - Pt, Pd on mordenite (also zeolite Y and β)

Reforming and steam reforming

- Cyclization, isomerization of cyclic compounds to cyclohexene, cyclohexene and its derivatives dehydrogenation to benzene, toluene, xylene (BTX), and other aromatics
- H₂ as a useful "by-product"
- Pt on high surface area support, non-acidic
- Reforming in the presence of $H_2O = H_2$ production