CG920 Genomics

Lesson 8

Next Generation Sequencing

Roman Hobza

Institute of Biophysics of the Czech Academy of Sciences hobza@ibp.cz

MUNI SCI

Sequencer	454 GS FLX	HiSeq 2000	SOLiDv4	Sanger 3730xl
Sequencing mechanism	Pyrosequencing	Sequencing by synthesis	Ligation and two-base coding	Dideoxy chain termination
Read length	700 bp	50SE, 50PE, 101PE	50 + 35 bp or 50 + 50 bp	400~900 bp
Accuracy	99.9%*	98%, (100PE)	99.94% *raw data	99.999%
Reads	1 M	3 G	$1200 \sim 1400 M$	_
Output data/run	0.7 Gb	600 Gb	120 Gb	1.9~84 Kb
Time/run	24 Hours	3~10 Days	7 Days for SE 14 Days for PE	20 Mins~3 Hours
Advantage	Read length, fast	High throughput	Accuracy	High quality, long read length
Disadvantage	Error rate with polybase more than 6, high cost, low throughput	Short read assembly	Short read assembly	High cost low throughput
Disadvantage	polybase more than 6, high cost, low	Short read assembly	Short read assembly	

DNA degradation

Mechanical damage during tissue homogenization.

Wrong pH and ionic strength of extraction buffer.

Incomplete removal / contamination with nucleases.

Phenol: too old, or inappropriately buffered (pH 7.8 – 8.0); incomplete removal.

Wrong pH of **DNA solvent** (acidic water). *Recommended: 1:10 TE for short-term storage, or 1xTE for long-term storage.*

Vigorous pipetting (wide-bore pipet tips).

Vortexing of DNA in high concentrations.

Too many freeze-thaw cycles (we tested 5, still Ok).

Debatable: sequence-dependent

{

Frederick Sanger

1958 – Nobel prize – insuline structure
1975 - Dideoxy sequencing method
1977 – Φ-X174 (5,368 bp) sequence
1980 – second Nobel prize
λ phage sequence shotgun method (48,502 bp)

MATERN	VAL LINE: H1	
	Overview History Haplogroup Tree Community	
	Locations of haplogroup H1 before the widespread migrations of the past few hundred years.	Maternal haplogroups are families of mitochondrial DNA types that all trace back to a single mutation at specific place and time. By looking at the geographid distribution of mtDNA types, we learn how our ancient female ancestors migrated throughout the world. Haplogroup: H1, a subgroup of H Age: 13,000 years Region: Europe, Near East, Central Asia, Northwestern Africa Example Populations: Spanish,Berbers,Lebanese Highlight: H1 appears to have been common in Doggerland, an ancient land now flooded by the North Sea.

HOME N	MY RESULTS FAMILY & FRIENDS RESEARCH & COMMUNITY	
PATERNAL	LINE: I1*	
	Overview History Haplogroup Tree Community	
	11* is a subgroup of 11 Locations of haplogroup 11 before the widespread migrations of the past few hundred years.	Paternal haplogroups are families of Y chromosomes that all trace back to a single mutation at a specific place and time. By looking at the geographic distribution of these related lineages, we learn how our ancient male ancestors migrated throughout the world. Haplogroup: 11, a subgroup of 1 Age: 28,000 years Region: Northern Europe Example Populations: Finns, Norwegians, Swedes Highlight: Haplogroup 11 reaches highest frequencies in Scandinavia.
	0% 50% 100% Haplogroup I1 can be found at levels of 10% and higher in many parts of Europe, due to its expansion with men who migrated northward after the end of the Ice Age about 12,000 years ago. It reaches its highest levels in Denmark and the southern parts of Sweden and Norway.	Haplogroups of You and Your Connections 11* Roman Hobza Haplogroups of Example Profiles

SHOW RESULTS FOR Roman Hobza 🔻

SEE NEW AND RECENTLY UPDATED REPORTS »

These reports provide information about your possible risk for developing certain health conditions based on genetics. Environmental and lifestyle factors also often play a large role in your risk for developing these conditions.

NAME	CONFIDENCE	YOUR RISK	AVG. RISK	COMPARED TO AVERAGE
Venous Thromboembolism	****	41.8%	12.3%	3.39x 📕
Gout	****	35.7%	22.8%	1.57x 🚍
Melanoma	****	4.0%	2.9%	1.38x 🚦
Restless Legs Syndrome	****	2.5%	2.0%	1.25x 🚦
Exfoliation Glaucoma	****	2.2%	0.7%	2.90x 🚦
Esophageal Squamous Cell Carcinoma (ESCC)	****	0.43%	0.36%	1.21x ¦
Stomach Cancer (Gastric Cardia Adenocarcinoma)	****	0.28%	0.23%	1.22x ¦
Primary Biliary Cirrhosis	****	0.11%	0.08%	1.43x ¦
Scleroderma (Limited Cutaneous Type)	****	0.08%	0.07%	1.24x ;

24

SNP: rs6025			
	SNP used	Genotype	Adjusted Odds Ratio*
Roman Hobza	rs6025	CT	European: 4.69
* Odds ratios are repor	ted for all available eth	nicities.	
an still participate	in the activation of	thrombin, a situa	sequence of factor V that prevents protein C from inactivating it. Since this version of factor V titon results in which thrombin can be turned on but cannot be turned off. Once the clotting kier version of the SNP makes it more difficult to shut it off.
The riskiness of the	T version of this SI	NP is further incre	ased for women who also take hormonal birth control.
(The riskier version role in clotting were		sometimes calle	d Factor V Leiden, after the city in the Netherlands where this SNP and its effects on factor V's
			ie of "European" ancestry confirmed the association between this SNP and VTE in samples razil, Italy, and France.
African and Asian p	opulations appear	to have only one	version of the SNP, meaning that association studies are very difficult to perform.
Citations			
	-		ous for factor V Leiden (activated protein C resistance)." <i>Blood</i> 85(6):1504-8. nous thrombosis in postmenopausal women." <i>JAMA</i> 297(5):489-98.
Emmerich et al. (2001) .	Combined effect of fac	tor V Leiden and prot	hous informations in positinentopausar women. Sama 27 (5):497-76. hrombin 20210A on the risk of venous thromboembolismpooled analysis of 8 case-control studies including 2310 fromboembolism." Thromb Haemost 84(3):809-16.
			ed with resistance to activated protein C." Nature 369(6475):64-7.
ane et al. (2000), "Role	of hemostatic gene pol	ymorphisms in venou	s and arterial thrombotic disease." Blood 95(5):1517-32.

NAME	CONFIDENCE	YOUR RISK	AVG. RISK	COMPARED TO AVERAGE
Type 2 Diabetes	****	17.7%	25.7%	0.69x
Alzheimer's Disease	****	4.3%	7.2%	0.60x
Rheumatoid Arthritis	****	1.6%	2.4%	0.68x 🖁
Parkinson's Disease	****	1.2%	1.6%	0.73x :
Age-related Macular Degeneration	***	0.92%	6.55%	0.14x 皆
Crohn's Disease	***	0.31%	0.53%	0.58x ¦
Multiple Sclerosis	***	0.24%	0.34%	0.69x
Type 1 Diabetes	****	0.12%	1.02%	0.12x ¦
Celiac Disease	****	0.05%	0.12%	0.44x ¦

BRCA Cancer Mutations (Selected)	****	Variant Absent
Beta Thalassemia	****	Variant Absent
Bloom's Syndrome	****	Variant Absent
Canavan Disease	****	Variant Absent
Congenital Disorder of Glycosylation Type 1a (PMM2-CDG)	****	Variant Absent
Connexin 26-Related Sensorineural Hearing Loss	****	Variant Absent
Cystic Fibrosis	****	Variant Absent
D-Bifunctional Protein Deficiency	****	Variant Absent
DPD Deficiency	****	Variant Absent
Dihydrolipoamide Dehydrogenase Deficiency	****	Variant Absent
Factor XI Deficiency	****	Variant Absent
Familial Dysautonomia	****	Variant Absent
Familial Hypercholesterolemia Type B	****	Variant Absent
Familial Hyperinsulinism (ABCC8-related)	****	Variant Absent
Familial Mediterranean Fever	****	Variant Absent
Fanconi Anemia (FANCC-related)	****	Variant Absent
G6PD Deficiency	****	Variant Absent

Reading Ability	***	Typical Nonword Reading Sco
Response to Diet	***	See Repo
Response to Exercise	***	See Repo
Sex Hormone Regulation	***	See Repo
Sweet Taste Preference 🔆	***	See Repo
Tooth Development	***	See Repo
Tuberculosis Susceptibility	***	See Repo
Breast Morphology 🌻 🔆	***	Not Applicab
Menarche Q	***	Not Applicab
Menopause 9	***	Not Applicab
Eating Behavior	**	Greater tendency to overe
HIV Progression	**	See Repo
Hair Thickness	**	Typical, if European or Africa
Longevity	**	See Repo
Measures of Intelligence	**	Lower Non-Verbal
Memory	**	Typical Episodic Memo
Odor Detection	**	Typical Sensitivity to Sweaty Odd
Pain Sensitivity	**	Increase
Avoidance of Errors	*	See Repo

Fluorescent dye conjugated nucleotides (Alexa 546 dUTP) were incorporated at the Nt.BspQI sites by Vent (exo-) polymerase. Next, we stained the labeled DNA molecules with the

DNA-intercalating dye, YOYO-1, which facilitates visualization of the DNA molecule and measurement of its size. Then, we loaded the DNA onto a nanochannel array chip and

applied an electric field, which gradually drives the long, coiled DNA molecules in free suspension through a series of micro- and nanofluidic structures. Once

the nanochannels were populated by a set of linearized DNA molecules, we imaged them with automated high-resolution fluorescent microscopy. We determined the size of each DNA molecule by directly measuring its contour length. The histogram peaks represent the location of each sequence motif along the molecules.

