Epidemiological methods

Objectives

At the end of the week students should be able to:

- Differentiate between different types of data.
- Describe the structure of an epidemiological dataset
- Define and calculate measures of disease occurrence and measures of association
- Describe the basic features of the main types of epidemiological studies
- Explain the main features of bias, confounding, chance
- Be able to discuss causality of the association

Epidemiology

- The study of the distribution and determinants of the frequency of healthrelated outcomes in specified populations
- Quantitative discipline
- Measurement of disease / condition / risk factor frequency is central to epidemiology
- Comparisons require measurements

Much of epidemiological research is taken up trying

- to establish associations between exposures and disease rates
- to measure the extent to which risk changes as the level of exposure changes
- to establish whether the associations observed may be truly causal (rather than being just consequence of bias or chance)
- Epidemiology has a major role in developing appropriate strategies to improve public health through prevention
- public health has wider meaning in this sense; it is about the health of the whole population.
\circ it does not cover only classic areas, such as immunization or monitoring of diseases, it also covers factors such as poverty, smoking, nutrition
- In this sense, epidemiology has a crucial role in trying to put into perspective the effects on population health of different risk factors.

Variables (outcomes/risk factors)

- Binary
- Deaths (y/n)
- Disease (y/n)
- Categorical (ordinal or nominal)
- Frequency of drinking (never, I-3 times a month, I-3 times a week, 4 times a week or more often)
- Severity of pain (none, some, a lot)
- Continous
- BMI, blood pressure etc

What type of variable is...

- Self-rated health
- Very poor, poor, average, good, very good
- Total cholesterol concentration
- Economic activity
- Employed, unemployed, housewife, pensioner
- Risk of CVD death in the next 10 years (SCORE)
- Ethnicity
- Quartile of income
- Sex
- Marital status (married, divorced, ever single, widowed)

Binary outcomes:"cases" vs.

 "non-cases"- Persons with disease $=$ "cases"
- Definition of case is crucial
- E.g.
- Obesity: BMI ≥ 30
- Hypertension: SBP $\geq 140 \mathrm{~mm} \mathrm{Hg}$ or DBP $\geq 90 \mathrm{~mm}$ Hg or treatment
- High cholesterol: $\geq 6.2 \mathrm{mmol} / \mathrm{L}$
- Must always be clearly specified

Measures of disease frequency

- Used for binary outcomes
- Require a numerator and denominator number of persons with disease
number of persons examined
- expressed as X per 1000 persons (or per 100,000 etc)

Numerators and denominators

- The number of cancer cases in the UK is 247,667 whereas in Belgium it is 47,948.
- The UK has a bigger problem in numerical terms.
- But do Belgians have lower risk of getting cancer?
- Numerators alone are meaningless
- We need both numerators AND denominators

Numerators and denominators

- The number of cancer cases in the UK is 247,667 whereas in Belgium it is 47,948.
- The UK has a bigger problem in numerical terms.
- But do Belgians have lower risk of getting cancer?
- Numerators alone are meaningless
- We need both numerators AND denominators
- UK: $247667 / 60000000=0.00413=413$ per 100 000
- Belgium: $47948 / 10000000=0.00479=479$ per 100000

Prevalence

- number of existing cases / population of interest at a defined time

Incidence

- number of new cases in a given time period / total population at risk

Prevalence

- number of existing cases / population of interest at a defined time
- Unable to work now for health reasons
- Injury ever in the past
- Ever wheezing or whistling in the chest

NOTE a denominator is needed for prevalence

Adult prevalence by BMI status

Health Survey for England (2008-2010 average)
National Obesity Observatory

Adult (aged 16+) BMI thresholds
Underweight: $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$
Healthy weight: 18.5 to $<25 \mathrm{~kg} / \mathrm{m}^{2}$
Overweight: 25 to $<30 \mathrm{~kg} / \mathrm{m}^{2}$
Obese: $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$

Incidence rates

- In 2014,55,222 new cases of breast cancer were diagnosed in the UK.
- Approximately 65M people in the UK
- Most cases in women (only 389 cases in men)
- Population at risk?
- Cumulative incidence of breast cancer in the UK in 2014 in females was?
???
???

Incidence rates

- In 2014,55,222 new cases of breast cancer were diagnosed in the UK.
- Approximately 65.5M people in the UK
- Most cases in women (only 389 cases in men)
- Population at risk?
- Incidence of breast cancer in the UK in 2014 in females was?

55222-389 54833 $=0.001674=167.4 / 100,000$
65.5M/2
32.75

Incidence rate example:

3 -year study with a sample size of 100 , outcome of interest was fatal heart disease.

	year 1	year 2	Study ends
developed outcome	6	5	4
dropped out	4	10	-
sample at risk	90	75	71

- IO participants were followed for I year
- 15 participants were followed for 2 years
- 75 participants were followed for 3 years

Total person-years:
Rate $=$

Incidence rate example:

3 -year study with a sample size of 100 , outcome of interest was fatal heart disease.

	year 1	year 2	Study ends
developed outcome	6	5	4
dropped out	4	10	-
sample at risk	90	75	71

- IO participants were followed for I year
- 15 participants were followed for 2 years
- 75 participants were followed for 3 years

Total person-years of follow up $=(10 \times 1)+(15 \times 2)+(75 \times 3)=265$ person-years at risk
Incidence rate $=15 / 265=0.057=57$ cases per 1000 person-years

Relationship between prevalence and incidence

- The prevalence of a health-related outcome depends both on the incidence rate and the time between onset and recovery or death.
- Prevalence $=$ Incidence \times Average disease duration
- E.g. volume of water in water tank depends on
- Inflow
- Outflow

Mortality

- number of deaths / total population
- Rate (or risk)
- the number of deaths in a specified population, divided by the number of that population, per unit time.
- If the mortality rate is to be calculated in a given year, the mid-year population is usually used as the denominator.
- Mortality rate is always expressed as deaths per X (e.g. 1000 persons per year). E.g.
- A city has a population of 900,000, 30,000 deaths occur in a 3-year period.
- Mortality rate for the period $=30000 / 900000=0.0033$ or 33 deaths per 1000 per 3 years
- = II deaths per 1000 per year.

Mortality rates can be:

- All-cause mortality rates: refers to the total number of deaths per 1000 people per year.This is also usually referred to just as all-cause mortality.
- Cause-specific mortality rate refers to total number of deaths due to a specific cause.

Mortality rates can be:

- Crude mortality rates - no care has been taken for age structure of the population
- Standardised mortality rate refers to a mortality rate which is age-standardised in order to permit comparisons between different countries, regions etc.

Case fatality

- Case fatality rate is the rate of death among people who already have a condition, usually in a defined period of time. usually measured as a decimal or as a percent.
- Survival rate is the proportion of people who remain alive for a given period of time after diagnosis of disease. E.g. breast cancer has 5-year survival rate around 70%.

