Measures of effect

- So far, x 2 test - testing whether there is an association between two proportions using a 2×2 (or $2 \times n$) table
- We are often interested in the relative difference between two proportions rather than the actual difference
- The effect estimates that we present are then ratios: there are three main measures we will use:
- Rate ratio
- Risk ratio
- Odds ratio

Relative measures of effect (relative

 risk)We have 2 groups of individuals:

- An exposed group (group with risk factor of interest) and unexposed group (without such factor of interest)
- We are interested in comparing the amount of disease (mortality or other health outcome) in the exposed group to that in the unexposed group

Risk/rate

- Measures the strengths of association between the risk factor and disease
- Incidence rate or Risk in exposed (r_{1})
- Incidence rate or Risk in unexposed $\left(r_{0}\right)$

Risk ratio

- we calculate the risk ratio (RR) as:

$$
R R=r_{1} / r_{0}
$$

Risk difference

- the absolute difference between two risks (or rates)

$$
R D=r_{1}-r_{0}
$$

Example: cohort study of oral contraceptive use and heart attack

	Myocardial infarction		
	Yes	No	Total
OC use			
Yes	25	400	425
No	75	1500	1575
Total	100	1900	2000

Risk (exposed) $=25 / 425=0.059$
Risk (unexposed) $=75 / 1575=0.048$
Relative risk $=0.059 / 0.048=1.23$

- We can also have different strata of exposure. We may calculate ratio measures for each strata - we compare measure of frequency in each level with measure of frequency in the baseline (unexposed) level.
- Example: Death rates from CHD in smokers and non-smokers by age

Age	Smokers rate	Non- smokers rate	Rate ratio
$35-44$	0.61	0.11	$\mathbf{5 . 5}$
$45-54$	2.40	1.12	$\mathbf{2 . 1}$
$55-64$	7.20	4.90	$\mathbf{1 . 5}$
$65-74$	14.69	10.83	$\mathbf{1 . 4}$
$75-84$	19.18	21.20	$\mathbf{0 . 9}$
$85+$	35.93	32.66	$\mathbf{1 . 1}$
ALL AGES	4.29	3.30	$\mathbf{1 . 3}$

What can you say about this table?

Age	Smokers rate	Non- smokers rate	Rate ratio
$35-44$	0.61	0.11	$\mathbf{5 . 5}$
$45-54$	2.40	1.12	$\mathbf{2 . 1}$
$55-64$	7.20	4.90	$\mathbf{1 . 5}$
$65-74$	14.69	10.83	$\mathbf{1 . 4}$
$75-84$	19.18	21.20	$\mathbf{0 . 9}$
$85+$	35.93	32.66	$\mathbf{1 . 1}$
ALL AGES	4.29	$\mathbf{3 . 3 0}$	$\mathbf{1 . 3}$

The rate ratio decreases with increasing age. It may suggest that the effect of smoking on the rate of CHD is higher in younger ages.

Odds ratio

- Alternative measure of risk

The odds of disease is the number of cases divided by the number of non-cases Cases
Odds = ------------
Non cases
Odds ratio (OR) is ratio of odds of disease among exposed (odds ${ }_{\text {exp }}$) and odds of disease among unexposed (odds ${ }_{\text {unexp }}$)

OR= odds exp $/$ odds $_{\text {unexp }}$

	Myocardial infarction		
	Yes	No	Total
OC use			
Yes	25	400	425
No	75	1500	1575
Total	100	1900	2000

We can calculate

- Odds (exposed) $\mathrm{O}_{\text {exp }}=25 / 400$
- Odds (unexposed) $\mathrm{O}_{\text {unexp }}=75 / 1500$
- Odds ratio $\mathrm{OR}=\mathrm{O}_{\exp } / \mathrm{O}_{\text {unexp }}=1.25$

Odds ratio as an approximation to the risk ratio

- For a rare disease, odds ratio is approximately equal to the risk ratio (because denumerators are very similar)
- For a common conditions, OR overestimates the true RR

Measures of population impact

- Population attributable risk (PAR) is the absolute difference between the risk (or rate) in the whole population and the risk or rate in the unexposed group

$$
P A R=r-r_{0}
$$

Population attributable risk fraction (PARF or PAR\%)

- It is a measure of the proportion of all cases in the study population (exposed and unexposed) that may be attributed to the exposure, on the assumption of a causal association
- It is also called the aetiologic fraction, the percentage population attributable risk or the attributable fraction
- If r is rate in the total population $\mathbf{P A F}=\mathbf{P A R} / \mathrm{r}$
PAR $=r-r_{0}$
PAF $=\left(r-r_{0}\right) / r$

Risk or rate difference

Measure of the absolute effect
the absolute difference between two risks (or rates)

$$
R D=r_{1}-r_{0}
$$

Similar for rates $=$ rate difference $=$ incidence rate in exposed - incidence rate in unexposed

Measure of effect	Use of the measure	How to interpret results
Risk Difference	Public Health Interested in excess disease burden due to factor ("Attributable risk")	Close to 0 = little effect Large difference = large effect
Risk Ratio	Epidemiology Causation "This factor doubles the risk of the disease"	Close to 1 = little effect Large ratio = large effect Close to 0 = large effect!
Odds Ratio	As for Risk Ratio "This factor doubles the odds of the disease" Only possibility (case-control study) More advanced statistical methods (logistic regression)	

Exercise

- 50 persons attended a garden party
- 25 of them developed diarrhoea in the next 3 days
- What was the risk of diarrhoea among the participants of the party?

Exercise - cont.

- 30 party visitors had a BBQ (minced meat)
- 24 of them developed diarrhoea
- 20 people did not eat BBQ
- I of them developed diarrhoea
- How would you calculate RR related to eating BBQ?

Exercise - cont.

- Risk among unexposed R_{0} :
- I/20
- Risk among exposed R_{1} :
- 24/30
- Relarive risk $R R=R_{1} / R_{0}=(24 / 30) /(1 / 20)=16$

Summary of this part

I. Construct 2-way table to examine association between two categorical variables
2. Conduct Chi-squared test to assess the association between two categorical variables
3. Calculate measures of the effect for binary data

- Risk difference
- Risk ratio (relative risk)
- Odds ratio

