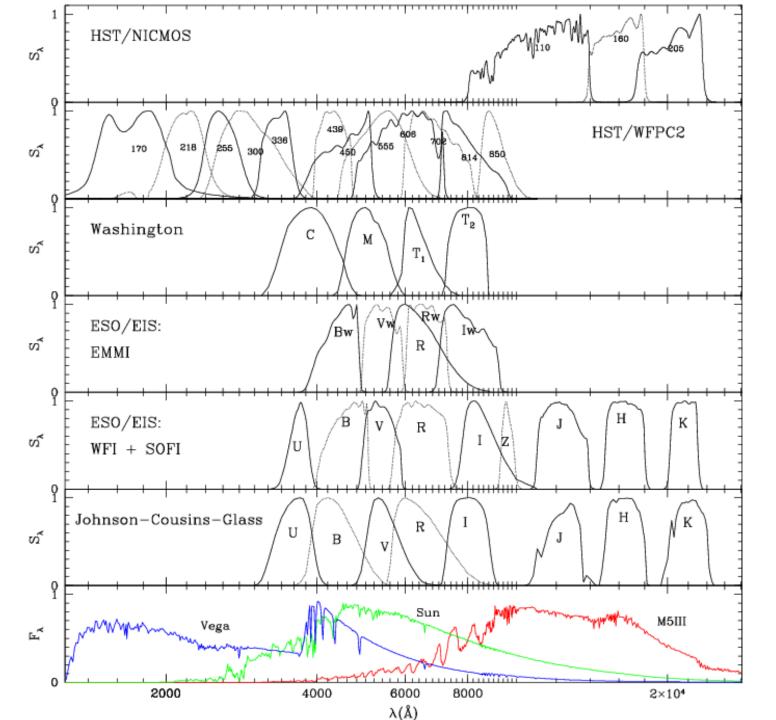
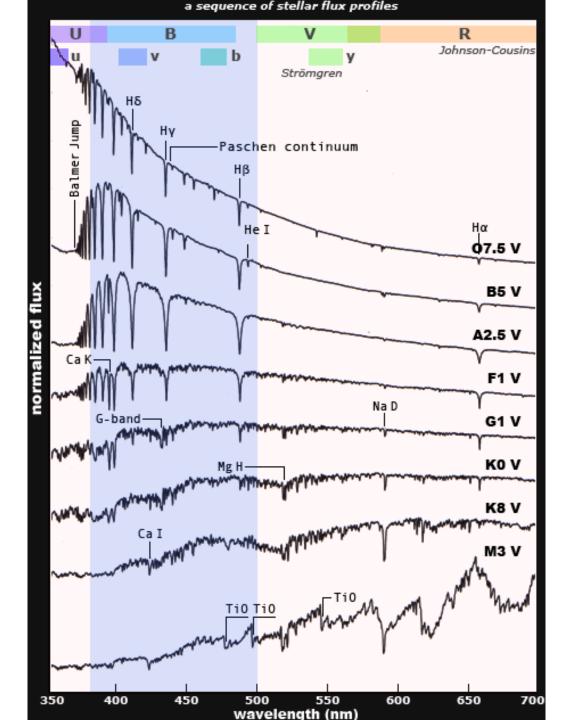
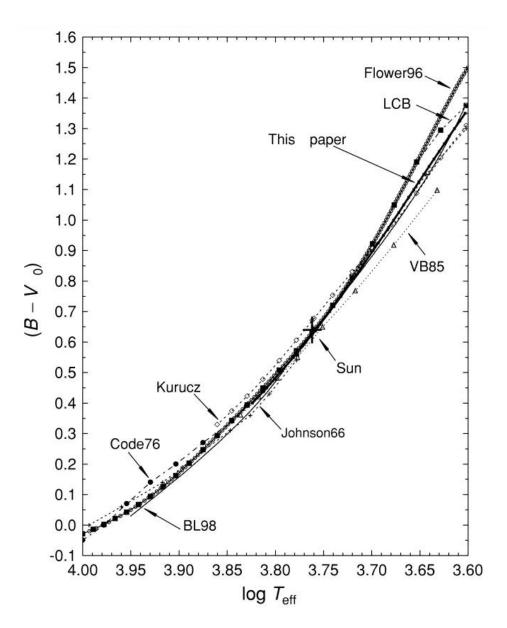

Hertzsprung-Russell Diagram




Hertzsprung-Russell Diagram


Colour and $T_{\rm eff}$

- Measuring accurate $T_{\rm eff}$ for stars is an intensive task spectra needed and model atmospheres
- Spectral Energy Distribution (SED) fitting, only useful if measurements in the UV are available
- Magnitudes of stars are measured at different wavelengths
- Colours => Calibrations => $T_{\rm eff}$
- The Asiago Database on Photometric Systems (ADPS) lists about 200 different systems

Colour and $T_{\rm eff}$

Various calibrations can be used to provide the colour relation:

$$(B - V) = f(T_{eff})$$

Remember that observed (B - V) must be corrected for interstellar extinction to $(B - V)_0$

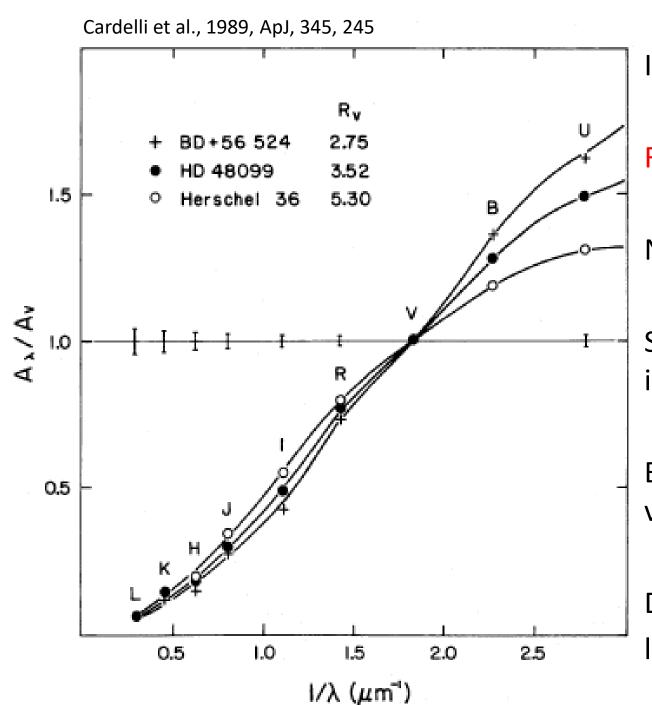
Most of the calibrations are for cool type stars

Absorption = Extinction = Reddening

•
$$A_V = k_1 E(B-V) = k_2 E(V-R) = ...$$

 General extinction because of the ISM characteristics between the observer and the object

 Differential extinction within one star cluster because of local environment


Both types are, in general wavelength dependent

Reasons for the interstellar extinction

- Light scatter at the interstellar dust
- Light absorption => Heating of the ISM
- Depending on the composition and density of the ISM

Main contribution due to dust

 Simulations and calculations in Cardelli et al. (1989, ApJ, 345, 245)

Important parameter:

$$R_V = A_V / E(B - V)$$

Normalization factor

Standard value used is 3.1

Be careful, different values used!

Depending on the line of sight

TABLE 2 OPTICAL/IR EXTINCTION RATIOS FOR R = 3.1

Extinction Ratio (1)	Observed Value (2)	References (3)	Model Curve Value (4)
A(M)/E(B-V)	0.08-0.12	1, 2	0.12
A(L)/E(B-V)	0.09-0.20	1,2,3,4	0.19
A(K)/E(B-V)	0.33-0.38	2, 3, 4	0.36
A(H)/E(B-V)	0.52-0.55	1, 2	0.53
A(J)/E(B-V)	0.85-0.91	1, 2, 3	0.86
A(I)/E(B-V)	1.50	3	1.57
A(R)/E(B-V)	2.32	3	2.32
A(V)/E(B-V)	3.10		3.10
E(U-B)/E(B-V)	$0.70 + 0.05 \times E(B - V)$	5	$0.69 + 0.04 \times E(B - V)$
E(b-y)/E(B-V)	0.74	6	0.74
E(m1)/E(b-y)	-0.32	6	-0.32
E(c1)/E(b-y)	0.20	6	0.17
E(u-b)/E(b-y)	1.5	6	1.54

REFERENCES.—(1) Rieke & Lebofsky 1985; (2) Whittet 1988; (3) Schultz & Wiemer 1975; (4) Savage & Mathis 1979; (5) FitzGerald 1970; (6) Crawford 1975.

Table 3. Multiband Relative Extinction Values

Band (λ)	$\lambda_{\mathrm{eff,0}}~(\mu\mathrm{m})$	$A_{\lambda}/A_{G_{\mathrm{RP}}}$	$A_{\lambda}/A_{G_{\mathrm{RP}}}$ (from Chen18)	A_{λ}/A_{V}	$A_{\lambda}/E(G_{\mathrm{BP}}-G_{\mathrm{RP}})$
$GAIA\ G_{\mathrm{BP}}$	0.5387	1.700 ± 0.007		1.002 ± 0.007	2.429 ± 0.015
$GAIA\ G_{\mathrm{RP}}$	0.7667	1		0.589 ± 0.004	1.429 ± 0.015
Johnson B	0.4525	2.206 ± 0.023		1.317 ± 0.016	3.151 ± 0.027
Johnson V	0.5525	1.675 ± 0.010		1	2.394 ± 0.018
SDSS u	0.3602	2.653 ± 0.024		1.584 ± 0.017	3.791 ± 0.028
SDSS g	0.4784	2.018 ± 0.012		1.205 ± 0.010	2.883 ± 0.019
SDSS r	0.6166	1.421 ± 0.006		0.848 ± 0.006	2.030 ± 0.016
SDSS i	0.7483	1.056 ± 0.002		0.630 ± 0.004	1.509 ± 0.015
SDSS z	0.8915	0.767 ± 0.004		0.458 ± 0.003	1.096 ± 0.012
Pan-STARRS \boldsymbol{g}	0.4957	1.934 ± 0.010		1.155 ± 0.009	2.764 ± 0.018
Pan-STARRS \boldsymbol{r}	0.6211	1.413 ± 0.005		0.843 ± 0.006	2.019 ± 0.015
Pan-STARRS \boldsymbol{i}	0.7522	1.052 ± 0.001		0.628 ± 0.004	1.503 ± 0.015
Pan-STARRS \boldsymbol{z}	0.8671	0.815 ± 0.002		0.487 ± 0.003	1.165 ± 0.012
Pan-STARRS y	0.9707	0.662 ± 0.004		0.395 ± 0.003	0.947 ± 0.011
2MASS J	1.2345	0.407 ± 0.007		0.243 ± 0.004	0.582 ± 0.011
$2{\rm MASS}~H$	1.6393	0.219 ± 0.010	0.222 ± 0.012	0.131 ± 0.006	0.313 ± 0.014
2MASS $K_{\rm S}$	2.1757	0.125 ± 0.010	0.130 ± 0.006	0.078 ± 0.004	0.186 ± 0.009
WISE~W1	3.3172	0.055 ± 0.011	0.066 ± 0.006	0.039 ± 0.004	0.094 ± 0.009
WISE~W~2	4.5501	0.029 ± 0.011	0.044 ± 0.006	0.026 ± 0.004	0.063 ± 0.009
WISE~W3	11.7281	0.066 ± 0.016		0.040 ± 0.009	0.095 ± 0.021
$GAIA\ G$	0.6419	1.323 ± 0.003		0.789 ± 0.005	1.890 ± 0.015
Spitzer~[3.6]			0.062 ± 0.005	0.037 ± 0.003	0.089 ± 0.007
Spitzer~[4.5]			0.044 ± 0.005	0.026 ± 0.003	0.063 ± 0.007
Spitzer~[5.8]			0.031 ± 0.005	0.019 ± 0.003	0.044 ± 0.007
Spitzer [8.0]			0.042 ± 0.005	0.025 ± 0.003	0.060 ± 0.007

At Spitzer bands, the determination of the relative extinction $A_{\lambda}/A_{\rm V}$ and the extinction coefficient $A_{\lambda}/E(G_{\rm BP}-G_{\rm RP})$ are based on the relative extinction values from Chen18.

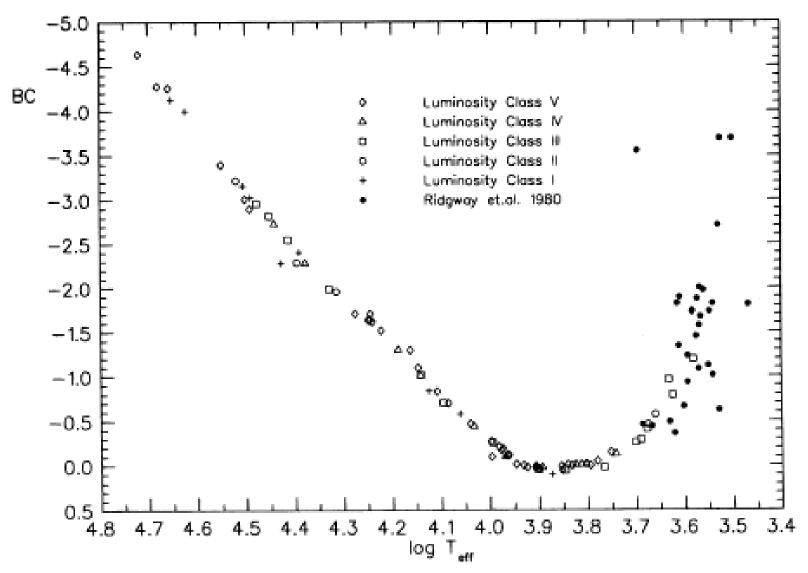
2019,

Absolute magnitude and bolometric magnitude

 Absolute Magnitude M defined as apparent magnitude of a star if it were placed at a distance of 10 pc

$$m - M = 5 \log(d/10) - 5$$

where d is in pc


• Magnitudes are measured in some wavelength. To compare with theory it is more useful to determine **bolometric** magnitude M_{bol} – defined as absolute magnitude that would be measured by a bolometer sensitive to all wavelengths. We define the bolometric correction to be

$$BC = M_{bol} - M_{V}$$

Bolometric luminosity is then

$$M_{\text{bol}} - M_{\text{bol},\odot} = -2.5 \log L/L_{\odot}$$
; $M_{\text{bol},\odot} = 4.75 \text{ mag}$

Bolometric Correction

BC from Flower, 1996, ApJ, 469, 355