Discovery and time series analysis of chemically peculiar (CP2 and CP4) stars Klaus Bernhard

My observing site on a balcony in Linz, Austria

available surveys (ASAS)

Introduction

What are chemically peculiar stars?

- slowly rotating hot main-sequence stars (spectral classes early B to early F) with peculiar surface compositions (10-15% of upper main-sequence stars)

- peculiar composition is due to processes that took place after the star formed, in particular the competition between radiative levitation and gravitational settling in surface layers (Michaud 1970; Richer et al. 2000)

- most chemical elements tend to sink under the force of gravity; those with numerous absorption lines near the local flux maximum are driven outwards by radiative pressure

Introduction

ID	Common name	Main characteristics
CP1	metallic-line (Am) stars	underabundances of Ca and Sc, overabundances of iron-peak and heavier elements
CP2	magnetic Ap stars	enhanced Si, Cr, Sr, Eu, or rare earth elements
CP3	HgMn stars	enhanced Hg, Mn, and other heavy elements
CP4	He-weak stars	weak He lines

CP2 and CP4 stars: organized magnetic fields with non-uniform distribution of chemical elements; surface spots of enhanced or depleted element abundance; elements involved: silicon, strontium, chromium, europium, and many other elements.

Most suitable for variable star astronomy!

Photometrically variable CP2/4 stars are traditionally referred to as α **2 Canum Venaticorum (ACV)** Variables, after their bright prototype.

Elements like europium: not very rare on earth; used for example in computer screens...

What do ACV light curves look like?

• non-uniform distribution of chemical elements: brighter and fainter spots/areas; brightness varies in different spectral bands

"Oblique rotator model" (Stibbs 1950): photometric period = rotation period

 Surface looks quite different from that of our sun; Figure: ESA

Surface temperatures and overabundant elements

From: A plethora of new, magnetic chemically peculiar stars from LAMOST DR4

(S. Hümmerich, E. Paunzen, K. Bernhard, 2020)

Absorption lines of the respective element near the emission maximum of the star

What do ACV light curves look like?

Astronomy & Astrophysics manuscript no. kepler1_rev1 August 20, 2018 ©ESO 2018

The Kepler view of magnetic chemically peculiar stars

S. Hümmerich^{1, 2}, Z. Mikulášek³, E. Paunzen³, K. Bernhard^{1, 2}, J. Janík³, I.A. Yakunin⁴, T. Pribulla⁵, M. Vaňko⁵, and L. Matěchová³

Addition of Gaussian scatter ('artificial error') of 1, 5 and 10 mmag

Characteristics of ACV light curves:

 single wave, double wave or complex; peak-to-peak amplitude in most cases <0.2 mag

- usually one single frequency, in rare cases additionally pulsations

- chemical star spots much more stable than Sun-like spots

- periods usually between 1 and 10 d, longer or shorter periods possible: 0.5 d - 5 yr (and more!)

 multiband photometry exhibits interesting features: varying light curve shapes in different passbands, even antiphase variation is possible

- <u>confirmation with spectroscopic methods is required;</u> <u>the groups of CP2 and CP4 stars are by definition</u> <u>classified via their spectroscopic characteristics</u> (mostly enhanced lines of certain elements in the blue-violet spectral region; see for example Gray & Corbally, 2009)

Where to get data?

- own observations or data from various sky surveys;

a few examples:

ASAS-SN: 20 telescopes in different places Nikon telephoto f400/2.8 lenses, diameter 14 cm ProLine PL230 CCD cameras https://asas-sn.osu.edu/

Kepler: Satellite mission for exoplanets

0.95 m Schmidt telescope 21 modules with two 2200x2048 CCDs https://archive.stsci.edu/kepler/

The All Sky Automated Survey (ASAS, Poland)

- "low-cost project" for photometric monitoring of the southern sky and parts of the northern sky (δ < +28°)

- data of the third phase (ASAS-3; 2000 2009) publicly available
- good photometry for 10^7 stars in the range 7 < V < 14 mag
- suitable also for the search for microvariables (variability amplitude: 4-5 mmag; especially in the range 8 < V < 10 mag, for example Pigulski 2014)

- even known exoplanets have been confirmed in ASAS data (Hümmerich & Bernhard, 2015)

ASAS telescopes, Las Campanas, Chile; source: ASAS homepage

SuperWASP (Instituto de Astrofísica de Canarias (IAC) and six universities from the United Kingdom)

Observatorio del Roque de los Muchachos (La Palma)

- South African Astronomical Observatory (SAAO)
- stations equipped with eight f/1.8 200mm Canon lenses and 2048 x 2048 Andor CCDs, field of view 7.8°x7.8°
- ca. 18 million suitable light curves in the range of 8 14 mag

SuperWASP

Wide Angle Search for Planets (Wikipedia, Home page) database contains 17,960,328 objects

Hosted by CERIT Scientific Cloud, Institute of Computer Science, on behalf of Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Brno, Czech Republic

Position:	
Object ID:	(name for Sesame name resolver)
or	
R.A.:	(0.0-360.0 arc degree or 00:00:00.0-24:00:00.0 hours)
Declination:	(-90.0 to +90.0 arc degree or [+/-]dd:mm:ss.sss arc degree)
Filter objects:	
Radius: 1	deg ~
Magnitude range: <	V <
Only nearest 10 objects.	
Only objects with at least	1 points
Search	
	ews
anna marth all	
(click to enlarge map)	-

Contact: support@cerit-sc.cz

WASP Data Acknowledgement

If you make use of data from this archive, please include the following acknowledgement:

This paper makes use of data from the DR1 of the WASP data (Butters et al. 2010) as provided by the WASP consortium, and the computing and storage facilities at the CERIT Scientific Cloud, reg. no. CZ.1.05/3.2.00/08.0144 which is operated by Masaryk University, Czech Republic.

Some deep surveys

ATLAS (Asteroid Terrestrial-impact Last Alert System)

- 50 cm diameter f/2 Wright-Schmidt telescope with 110 megapixel camera

- field of view: 7.4°x7.4°; complete sky visible from Hawaii two times per night; objects brighter than 20 mag http://mastweb.stsci.edu/mcasjobs/ **ZTF** (The Zwicky Transient Facility new timedomain survey)

- first light at Palomar Observatory in 2017.

- 47 square degree, 600 megapixel cryogenic CCD mosaic science camera; objects brighter than 20.5 mag

Could also identify faint ACVs in the galactic halo

Most surveys provide an automatic analysis and classification of variable stars. Why does it still make sense to search for ACVs in these data bases? example: ATLAS

A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS)

A. N. Heinze¹, J. L. Tonry¹, L. Denneau¹, H. Flewelling¹, B. Stalder², A. Rest^{3,4} K. W. Smith⁵, S. J. Smartt⁵, and H. Weiland¹

<u>Results</u>

- analysis of 142 million light curves with at least 100 data points from the first 2 years of observation
- 4.7 million variable star candidates with light curves
- among them 427.000 clearly variable stars, identified and classified with "machine learning"
- among them 214.000 specific variables (eclipsers etc.)
- 141.000 new discoveries

<u>The mysterious 'upside-down CBH' variables</u> <u>- close eclipsing binaries?</u>

A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS)

A. N. Heinze¹, J. L. Tonry¹, L. Denneau¹, H. Flewelling¹, B. Stalder², A. Rest^{3,4} K. W. Smith⁵, S. J. Smartt⁵, and H. Weiland¹

7. Interesting and Mysterious Subtypes

7.1. 'Upside-down CBH' Variables

These objects correspond to the possible new class of variables labeled in Figure 23. We first noticed them long before constructing the figure, when we were screening lightcurves manually in order to construct the training set for machine learning. A distinctive lightcurve shape, not matching any known type of variable, was seen repeatedly in the course of our screening. When

Location of proposed new type of variables

in the period vs. amplitude diagram

These "unknown variables" look exactly like (and in all likelihood are!) ACV variables.

ATO J097.8891-02.7981

ATO J083.1858+21.5801

➔ Many surveys ignore the rather rare class of ACV variables. They frequently end up mixed with other groups (like RS CVn stars) or are listed as MISC-type or 'unsolved' variables.

How to download time series data:

- removal of obvious outliers

- removal of data points with quality flag of 'D' (='worst data, probably useless')

- removal of instrumental trends, zero point issues between data sets

- workflow may be applied to many surveys

Example of an ACV project: download of light curves of spectroscopically confirmed ACVs (Renson & Manfroid 2009; 5000 objects)

ZTF data query in the NASA/IPAC Infrared Science Archive:

Obtain the available g-band lightcurves within 5 arcsec of a source position:

https://irsa.ipac.caltech.edu/cgi-bin/ZTF/nph_light_curves?POS=CIRCLE 298.0025 29.87147 0.0014&BANDNAME=g

In this way the light curves of your seminar were downloaded

OR use the private homepage of Dr. Chen:

http://variables.cn:88/lcz.php?SourceID=109576

Survey data sets are tricky, take care of HJD/MJD issues!

Survey data sets are tricky!

MJD Modified Julian Date: MJD=HJD-2400000.5 not: MJD=HJD-2400000

Trending

SPACE

4 Years From Now a New Star Was Predicted to Appear in Our Sky. But There Was a Typo

MICHELLE STARR 10 SEPTEMBER 2018

Well, this sure is one parade that's getting rained out of existence. A spectacular astronomical event that had been predicted for 2022 now isn't going to happen after all.

The modified Julian Date (MJD) was introduced by the Smithsonian Astrophysical Observatory in 1957, when storage space was still very expensive.

On the other hand: don't give up, if you come across weird data.

On the contrary: you might possibly be on the brink of an interesting discovery! Although these are rare, they do happen.

Mathematical Antipit/Simbad.u-strasbg.ft/Simbad/Sim-id?Ident=V*+AR+Sco P	C 🖉 V* AR Sco 🗙
Portal Simbad VizieR Aladin X-Match Other Help	fin
V* AR Sco	
other query modes :Identifier queryCoordinate queryCriteria queryReference queryBasic queryScript submissionTAPOutput optionsHelp	
Query : V* AR Sco	C.D.S SIMBAD4 rel 1.5.10 - 2016.11.11CET
Available data : Basic data • Identifiers • Plot & images • Bibliography • Measurements • External archives • Notes • Anne Basic data : V* AR Sco Variable Star of delta Sct type Other object types: V* (V*, AN), IR (2MASS, SSTc2d), ds* (Ref), * (EPIC) ICRS coord. (ep=J2000) : 16 21 47.28 -22 53 10.3 (Infrared) [60 60 90] B 2003ycat.22460C FK5 coord. (ep=J2000 eq=2000) : 16 21 47.28 -22 53 10.3 [60 60 90] B 2003ycat.22460C FK4 coord. (ep=J2000 eq=2000) : 16 18 47.99 -22 46 07.8 [60 60 90] S33.5192 +18.7121 [60 60 90] Fluxes (4) : B 14.1 [~] V2 E 2003AstL29468S J 12.696 [0.027] C 2003ycat.22460C H 12.080 [0.024] C 2003ycat.22460C	SIMBAD query around with radius 2 ard Interactive AladinLite view
K 11.715 [0.024] C 2003yCat.22460C	₽ FoV: 1.99

As in the case of AR Sco:

A striking example of the productivity of collaborations between amateur and professional astronomers.

STARGAZER'S CORNER: ADVENTURES UNDER THE NIGHT SKY 🗔

AMATEURS HELP DISCOVER PULSING WHITE DWARF

BY: FRANZ-JOSEF HAMBSCH | AUGUST 15, 2016 | 💭 2

An artist's impression shows the exotic binary system, AR Scorpii. *M. Garlick / University of Warwick / ESO*

Other troubles with survey data sets

- blending

- saturation

ASAS 181005-3043.7 Light Curve (asas3)

What are time series analysis?

- A time-series is a **series of observations** (or measurements, data) taken at different times. We thus obtain a set of data pairs (t, x), where t is the time and x is the observation (data value).
- We assume that t is error free, and that x is a **combination of the true signal plus some error**.
- Time-series analysis is the application of mathematics to find periodic signals in data. In doing so, we ultimately want to learn something about the physics involved in the phenomenon.
- 1. Fourier methods: these methods attempt to represent a set of observations with a series of trigonometric functions (sines and cosines, with different periods, amplitudes and phases). Examples: Lomb-Scargle, Bloomfield, Discrete Fourier Transform (DFT; Deeming) ...
- 2. Statistical methods: instead of fitting the observational data with trigonometric functions, statistical methods compare points in the observational data to other points at fixed time intervals or "lags" to see how different they are from one another. These methods are very suitable for the analysis of observational data that include non-sinusoidal periodic components. Examples: ANOVA (observations fit with periodic orthogonal polynomials), PDM, Lafler-Kinman ...

Time series analysis of an improved data set

Many programs available: Period04, (University of Vienna, Austria), Peranso (Vanmunster & Paunzen), vartools (University of Princeton, USA)

Sinusfit with fourier analysis

Period04 (Lenz & Breger 2005)

Period04: example workflow

(1)	Period04			_ _ X
data import	ile <u>special</u> Contigu	ration Help		
L.	Time String	it Fourier	Log	
[Current data file	٦		
	Import time string	no data file(s)		^
	Append time string			_
	Export time string			
	Start time: no	o points	Points selected:	0
	End time: no	o points	Total points:	0
import	Time string is in	magnitudes		
textfile				
with time	Date	Observatory	Observer	Other
· 1				
series data				
	Edit substring	Edit substring	Edit substring	Edit substring
	Display	table	Displa	y graph
L_	or help press E1			

Choose the directory containing the corresponding textfile(s) and confirm with "Open".

Open			D
Look In: 📑 Period04	•	· 6 6 6	<u>00</u> 0-
📑 John Greaves	agbmachodata140-1	159period.txt 🗋 Pe	riod04Sp
📑 Kepler	🗋 agbmachodata160-1	169period.txt 🗋 ptł	nreadVC2
agbmachodata101-104period	l.txt 🗋 P04lcon.ico	🗋 tes	st.TXT
agbmachodata105-116period	l.txt 🗋 period04.dll	🗋 uni	ins000.da
agbmachodata117-124period	l.txt 🗋 Period04.exe	🗋 un	ins000.ex
agbmachodata125-139period	l.txt 🗋 period04.jar		
•	II		Þ
File Name:			
Files of Type: All Files			-
		Open	Cancel

(3)

(2)

The first column ("Column #1") should contain the date of observation in Julian Days (JD) format. The second column ("Column #2") lists the observed magnitudes. These columns need to be defined as "Time" and "Observed".

ase enter file fo he file stern1.T2 lease specify an	ormat for file stern1. XT' contains 2 column appropriate attribut	nns. te for each of the columns in your data file.
Column #1	Column select righ	nore
Time	 Observed 	-
450476.71936	16.359	
450476.82722	16.369	
450476.84927	16.370	
450478.87165	16.543	
450480.85131	16.392	
450481.85081	16.498	
450482.85640	16.535	
450483.85106	16.287	
450483.87309	16.299	
450484.85821	16.382	
450485.85580	16.492	
450486.84969	16.520	
450486.87178	16.509	
450487.84014	16.303	
•		

After the import of the time string, you will be faced with the window shown below, which lets you track the start and end times of the time series data. In the following workflow, use will be made of the tabs "Fit" and "Fourier".

 \mathbf{i}

Period94		- O ×
ile <u>Special</u> Configuration <u>H</u> elp		
Time String Fit Fourier	Log	
Current data file		
Import time string C:\Program Files\Pe	riod04\stern1.TXT	A
Append time string		
Export time string		
Start time: 2449079.3069	Points selected:	309
End time: 2451393.0071	Total points:	309
Time string is in magnitudes		
Date Observatory	Observer	Other
unknown unknown	unknown	nknown
Edit substring Edit substring	Edit substring	Edit substring
Display table	Display o	ranh
	E.shield	•
r help press F1		
	"Display	graph" lets you
	view the l	ight curve (see
	following	page).
	8	F-8-).

The current light curve view can be exported via "Graph" → "Export Graphs As" → "jpg" (...).

(4) period search For the period search, we change to the tab "Fourier". The frequency range may need to be adjusted in the input fields "From" and "To". It is important to note that Period04 uses and returns frequency values (f, which is given in "cycles per day"; period P = 1/f).

		_			
File Special Configuration	Help	-			
Time String Fit	Fourier Log				
Fourier Calculation Settings			NVC	uist fr <mark>eque</mark>	ncv < 0.5
Title: My Fourier calculati	n		i i i i i i i i i i i i i i i i i i i		10y -0.0
From: 0 S	tep rate: High 🔽 2.1	16104057e-005			
To: 0.518971 N	yquist: 0.518971				
Weights: none	Edit weight settings	C+	art pariad saarah		
Calculations based on:		51	an period search		
Original data	Residuals at original	Spectral windo	ui Calculate .		
Adjusted data	Residuals at adjusted	Freq folded w SW			
Compact mode:	eaks only (ii) All				
Highest Peak at: Frequer	icy = 0 Amp	litude = 0			
	Calculate				

Before the period search starts, you will need to click through some (or all) of the below listed windows. As a first rough guideline, if you are not sure what to do, use the options indicated by the red arrows. (Of course, depending on the situation, these setting may need to be adjusted!)

Confirm	×		
2	The final frequency to calculate (50.0)		
	is higher than the calculated		
	Nyquist frequency (0.518971)		
1	Do you want to continue?		
	No.		
	<u>Y</u> <u>r</u> es <u>N</u> o		
Confirm			×
?	Using the chosen settings 2313700 data p	ointswill be creat	. Do.
_	It's recommended to either		
	- use the compact option "Peaks only",		
	- to limit the frequency range or		
	- to choose a larger step rate.	ettings?	
		oungoi	
	Yes No		
Subtra	ct zero point?	<u><</u>	
	Fourier analysis requires that the data		
	does not contain a zero point shift.		
	Otherwise additional features centered		
	at frequency 0.0 will appear.		
	These features may even dominate		
	the whole frequency spectrum.		
	Do you want to subtract the		
	average zero point of 15.231984 ?		
	Yes No		
			[
			Period04 now lists the
Confi	m	xI	derived frequency (F)
Com			and the corresponding
?	The following amplitude is the highes	t: N	
_	Frequency: 0.0030470672		amplitude (A). Using the
	Amplitude: 1.34040384		button "Display graph",
	bo you want to include this frequency	۲ ()	we can now visualize
	Yes No		the Fourier spectrum
			the routier spectrum.
		-	L

(5) improving a derived frequency via least-squares fit

Under the tab "Fit", we can improve the derived frequency / frequencies via a least-squares fit. To do so, we need to tick the boxes next to the corresponding frequencies (next to "F1" in the example shown below). Then confirm with "Calculate" and "Improve all".

	📥 Period04				×
	<u>File</u> Special	Configuration	Help		
	Time String) Fit	Fourier Log		
	Main	Goodness of Fit]		
	Impor	t Export	Selected Frequencies:	0	
	Prin	t frequencies	Residuals:	0	
	Settings for t	he Least-Squares F	Fit Calculation		_
	Fitting form	ula:	Z + Σ A _i sin(2π (Ω _i t + Φ _i)))	
	Calculations	based on:	Original data	djusted data	
tick tl	ne box eight	s: none	Edit weight settings		
~					
	Use Freq#	Frequency 0.0030470672	Amplitude	Phase	
	E F2	0.0000470072	0		
	- F2	0	0		
		0			
	L PS	0	0		
	F6	0			
	F7	0	0	0	
	F8	0	0	0	
	🔲 F9	0	0	0	
	🔲 F10	0	0	0	
	🔲 F11	0	0	0	
	🔲 F12	0	1 0 2	0	
	🔲 F13	0		0	
	🔲 F14	0	0	0	
	🗖 F15	0	0	0	-
	<u>C</u> al	Iculate	Improve all	Improve special	Ē
	Calculat	te amplitude/pha	se variations	Phase diagram	
	For help press F1	1			

→ In the illustrated example, we derive a frequency of f = 0.00305 cycles per day (c/d), which corresponds to a period of P = 327.9 days (1/0.00305=327.86885).

(6) light curve fit

To visualize the light curve fit, we change back to the tab "**Time String**" and select "Display graph". Period04 now shows the original light curve plus the sine-wave fit. This is useful to do a quick visual "sanity check" on the derived frequency.

In the illustrated example, the derived frequency fits the observations well, as illustrated below.

Result of period analysis with Period04 (Lenz & Breger 2005)

Attention needs to be paid to the presence of strong "daily alias" peaks in the Fourier diagrams.

- aliases: dependant on sample frequency
- daily aliases: 1-f; f+1, (1-f)+1 etc.
- sometimes alias frequencies can even ominate over the true frequencies

Peranso (Vanmunster & Paunzen)

• The Observations Window (ObsWin)

Peranso

The Period Window (PerWin)The Phase Window (PhaseWin)

Use Mouse to Zoom in/out and to activate/deactivate observations.

Peranso supports two categories of period analysis methods for variable stars and asteroids :

- Fourier methods: these methods attempt to represent a set of observations with a series of trigonometric functions (sines and cosines, with different periods, amplitudes and phases). They are one of the oldest forms of time-series analysis and are also quite flexible. Fourier methods supported by *Peranso* are : Lomb-Scargle, Bloomfield, Discrete Fourier Transform (Deeming) DFT , Date Compensated Discrete Fourier Transform (Ferraz-Mello) DCDFT, CLEANest and FALC (Harris).
- <u>Statistical methods</u>: instead of fitting the observation data with trigonometric functions, statistical methods compare points in the observation data to other points at fixed time intervals or "lags" to see how different they are from one another. These methods are very suitable for the analysis of observation data that include non-sinusoidal periodic components.

Within this category, Peranso implements :

a. *String methods* : these methods fold the observation data on a series of trial periods, and at each trial period the sum of the lengths of line segments joining successive points (the string-length) is calculated. Minima in a plot of string-length versus trial frequency indicate possible periods. *Peranso* implements two string methods : Dworetsky, Renson and Lafler-Kinman.

b. *Phase Dispersion Minimization* (PDM) : is a classical method of distinguishing between possible periods, by finding the period that produces the least observational scatter ("best phasing of data") around the mean light curve.

c. Jurkewich method

d. ANOVA method

Peranso furthermore implements one specific method for exoplanet transits :

 Edge Enhanced Box-fitting Least Squares (EEBLS): this method analyses stellar photometric time series in search for periodic transits by exoplanets, looking for signals characterized by a periodic alternation between two discrete levels, with much less time spent at the lower level.

Peranso

Which method for which data set?

• *Delta Cepheids* and *RR Lyrae* variables can generally be well analyzed with the Lafler-Kinman method.

• If you expect a variable to be *multi-periodic*, use CLEANest.

• If the light curve is highly non-sinusoidal, use ANOVA.

• PDM is also well suited for analyzing highly *non-sinusoidal* light curves consisting of only a few observations procured over a limited period of time.

- Consult the manual for special purposes!

Peranso (Vanmunster&Paunzen)

finally you hopefully get something like this:

Copy Image to Clipboard

Creates a bitmap copy of the current *Peranso* window and places it on the Microsoft Windows clipboard. The toolbar of the active window is never copied.

Copy Data to Clipboard

Copies the X axis (phase) and Y axis (mostly magnitude) values of the current Phase Window to the Microsoft Windows Clipboard.

Export Data to File ...

Saves the X axis (phase) and Y axis (mostly magnitude) values of the current Phase Window to a text file. The user will be prompted to enter the location and name of the file, using a standard Microsoft Windows File Save dialog box.

ZTF Survey: Basis of the new ACVs of your seminar

The **Z**wicky **T**ransient **F**acility (ZTF) new time-domain survey

first light at Palomar Observatory in 2017
47-square-degree, 600 megapixel

cryogenic CCD mosaic science camera

- objects brighter than 20.5 mag

- 3 band photometry in g, r and (partly) i

The Zwicky Transient Facility: System Overview, Performance, and First Results

Eric C. Bellm¹⁽⁰⁾, Shrinivas R. Kulkarni²⁽⁰⁾, Matthew J. Graham²⁽⁰⁾, Richard Dekany³, Roger M. Smith³, Reed Riddle³, Frank J. Masci⁴⁽⁰⁾, George Helou⁴⁽⁰⁾, Thomas A. Prince², Scott M. Adams², C. Barbarino⁵, Tom Barlow², James Bauer⁶, Ron Beck⁴, Justin Belicki³, Rahul Biswas⁷⁽⁶⁾, Nadejda Blagorodnova²⁽⁶⁾, Dennis Bodewits⁶⁽⁶⁾, Bryce Bolin^{1,8,36}⁽⁶⁾, Valery Brinnel⁹, Tim Brooke⁴, Brian Bue¹⁰, Mattia Bulla⁷⁽⁰⁾, Rick Burruss³, S. Bradley Cenko^{11,12}, Chan-Kao Chang (章展語)¹³, Andrew Connolly¹⁰, Michael Coughlin¹⁴, John Cromer³, Virginia Cunningham⁶, Kishalay De², Alex Delacroix³, Vandana Desai⁴, Dmitry A. Duev²^(a), Gwendolyn Eadie^{1,15,16,37}, Tony L. Farnham⁶, Michael Feeney³, Ulrich Feindt⁷, David Flynn⁴, Anna Franckowiak¹⁷, S. Frederick⁶, C. Fremling², Avishay Gal-Yam¹⁸, Suvi Gezari^{6,12}, Matteo Giomi⁹, Daniel A. Goldstein^{2,38}, V. Zach Golkhou^{1,16,37}, Ariel Goobar⁷, Steven Groom⁴, Eugean Hacopians⁴, David Hale³, John Henning³, Anna Y. Q. Ho², David Hover³, Justin Howell⁴, Tiara Hung⁶, Daniela Huppenkothen¹, David Imel⁴, Wing-Huen Ip (葉永垣)^{13,19}, Željko Ivezič¹, Edward Jackson⁴, Lynne Jones¹, Mario Juric¹, Mansi M. Kasliwal², S. Kaspi²⁰, Stephen Kaye³, Michael S. P. Kelley⁶, Marek Kowalski^{9,17}, Emily Kramer¹⁰, Thomas Kupfer^{2,21,22}, Walter Landry⁴, Russ R. Laher⁴, Chien-De Lee¹³, Hsing Wen Lin (林省文)^{13,23}⁽⁰⁾, Zhong-Yi Lin (林忠義)¹³, Ragnhild Lunnan⁵⁽⁰⁾, Matteo Giomi⁹, Ashish Mahabal^{2,24}⁽⁰⁾, Peter Mao³, Adam A. Miller^{25,26}⁽⁰⁾, Serge Monkewitz⁴, Patrick Murphy²⁷, Chow-Choong Ngeow¹³⁽⁰⁾, Jakob Nordin⁹, Peter Nugent^{28,29}⁽⁰⁾, Eran Ofek³⁰, Maria T. Patterson¹⁽⁰⁾, Bryan Penprase³¹, Michael Porter³, Ludwig Rauch¹⁷, Umaa Rebbapragada¹⁰, Dan Reiley³, Mickael Rigault³², Hector Rodriguez³, Jan van Roestel³³⁽⁰⁾, Ben Rusholme⁴⁽⁰⁾, Jakob van Santen¹⁷, S. Schulze¹⁸, David L. Shupe⁴, Leo P. Singer^{11,12}, Maayane T. Sournagnac¹⁸, Robert Stein¹⁷, Jason Surace⁴, Jesper Sollerman⁵, Paula Szkody¹⁵, F. Taddia⁵, Scott Terek⁴, Angela Van Sistine³⁴, Sjoert van Velzen⁶, W. Thomas Vestrand³⁵, Richard Walters³, Charlotte Ward⁶, Quan-Zhi Ye (葉泉志)^{2,4}, Po-Chieh Yu (俞伯傑)¹³, Lin Yan², and Jeffry Zolkower³

Filter transmission and mosaic CCDs

Figure 2. On-axis filter transmission for the ZTF g, r, and i-band filters (blue, orange, and red lines). Gray and green points are measurements of the quantum efficiencies of the CCDs with single- and double-layer anti-reflective coatings, respectively. Shaded regions show the range of these measurements, while gray and green lines show a model of the quantum efficiency for each configuration. (A color version of this figure is available in the online journal.)

Figure 1. Image of the ZTF focal plane. The top and bottom rows of $6k \times 6k$ science CCDs have a single-layer anti-reflective coating, while the middle rows have a dual-layer coating. Four $2k \times 2k$ CCDs are located on the perimeter of the mosaic; one serves as a guider while the remaining three control tip, tilt, and focus. North is up and east is left.

(A color version of this figure is available in the online journal.)

The ZTF Catalog of Periodic Variable Stars by Chen et al. (2020)

The Zwicky Transient Facility Catalog of Periodic Variable Stars

XIAODIAN CHEN,¹ SHU WANG,¹ LICAI DENG,¹ RICHARD DE GRIJS,^{2,3,4} MING YANG,⁵ AND HAO TIAN⁶

 CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China ²Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia ⁴International Space Science Institute-Beijing, 1 Nanertiao, Zhongguancun, Hai Dian District, Beijing 100190, China ⁵IAASARS, National Observatory of Athens, Vas. Pavlou & I. Metaxa, Penteli 15236, Greece ⁶Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing

100101, China

(Received 2019 November 29; Revised 2020 May 18; Accepted 2020 Jun 11)

Submitted to ApJS

ABSTRACT

The number of known periodic variables has grown rapidly in recent years. Thanks to its large field of view and faint limiting magnitude, the Zwicky Transient Facility (ZTF) offers a unique opportunity to detect variable stars in the northern sky. Here, we exploit ZTF Data Release 2 (DR2) to search for and classify variables down to $r \sim 20.6$ mag. We classify 781,602 periodic variables into 11 main types using an improved classification method. Comparison with previously published catalogs shows that 621,702 objects (79.5%) are newly discovered or newly classified, including ~700 Cepheids, ~5000 RR Lyrae stars, ~15,000 δ Scuti variables, ~350,000 eclipsing binaries, ~100,000 long-period variables, and about 150,000 rotational variables. The typical misclassification rate and period accuracy are on the order of 2% and 99%, respectively. 74% of our variables are located at Galactic latitudes, $|b| < 10^{\circ}$. This large sample of Cepheids, RR Lyrae, δ Scuti stars, and contact (EW-type) eclipsing binaries is helpful to investigate the Galaxy's disk structure and evolution with an improved completeness, areal coverage, and age resolution. Specifically, the northern warp and the disk's edge at distances of 15–20 kpc are significantly better covered than previously. Among rotational variables, <u>RS Canum Venaticorum and BY Draconis-type variables can be separated easily</u>. Our knowledge of stellar chromospheric activity would benefit greatly from a statistical analysis of these types of variables.

Figure 6. Distribution map (in Galactic coordinates) of the 781,602 periodic variables classified in ZTF DR2.

ZTF time series analysis

Fourth order Fourier function

 $f = a_0 + \sum_{i=1}^{4} a_i \cos(2\pi i t / P + \phi_i),$

 a_i and ϕ_i amplitudes and phases for each order

$$R^2$$

represents how well LCs are fit by the Fourier function

Selection criteria for variability types in Chen et al. (2020)

Type	Selection criteria
LAD	$R^2 > 0.4$, Amp. < 0.2, FAP < 0.001, $M_{W_{gr}} - M_{W_{gr}}$ (PL) < $3\sigma_{\text{DM}}$, $P < 0.2$ days
HAD	$R^2 > 0.4$, Amp. > 0.2, FAP < 0.001, $M_{W_{qr}} - M_{W_{qr}}$ (PL) < $3\sigma_{\rm DM}$
RRc	$R^2 > 0.6$, Amp. > 0.08, FAP < 0.001, $M_{W_{gr}} - M_{W_{gr}}$ (PL) < $3\sigma_{\rm DM}$, $\phi_{21} < 1.9$
RRab	$R^2 > 0.6$, Amp. > 0.08, FAP < 0.001, $M_{W_{gr}} - M_{W_{gr}}$ (PL) < $3\sigma_{\rm DM}$
Cepheid	$R^2 > 0.6$, Amp. > 0.08, FAP < 0.001, $M_{W_{gr}} - M_{W_{gr}}$ (PL) < $3\sigma_{\text{DM}}$, P < 40 days
Eclipsing binary	$R^2 > 0.4$, Amp. > 0.08, FAP < 0.001
Mira	$R^2>0.4,\mathrm{Amp.}>=2,\mathrm{FAP}<0.001$, $P>80~\mathrm{days}$
SR	$R^2 > 0.4$, Amp. < 2, FAP < 0.001, $P > 20$ days
BY Dra	$R^2 > 0.4$, FAP < 0.001, 2.8 < $M_{W_{gr}} < 4.6$, 0.25 < P < 20 days
RS CVn	$R^2 > 0.4$, FAP < 0.001, $M_{W_{qr}} = M_{W_{qr}}$ (Eclipsing binary), $P < 20$ days
EW	$a_4 <= a_2(a_2 + 0.125)$
	$a_2(a_2 + 0.125) < a_4 < a_2(a_2 + 0.375), a_4/a_2 <= 0.43$
EA	$a_4 >= a_2(a_2 + 0.375)$
	$a_2(a_2 + 0.125) < a_4 < a_2(a_2 + 0.375), a_4/a_2 > 0.43$

Table 1. Criteria adopted to classify different types of variables

There is no type "ACV"!

Type	Total	New (fraction)
Cep-I	1262	565 (44.8%)
Cep-II	358	154 (43.0%)
RRab	32,518	3034 (9.3%)
RRc	$13,\!875$	2178 (15.7%)
δ Scuti	16,709	15,396 (92.1%)
\mathbf{EW}	36,9707	306,375 (82.9%)
EA	49,943	40,201 (80.5%)
Mira	$11,\!879$	4,997 (42.1%)
SR	119,261	97,737 (82.0%)
RS CVn	81,393	70,957 (87.2%)
BY Dra	84,697	80,108 (94.6%)
Total number	781,602	621,702 (79.5%)

Results

ACV variables may be included in the category 'RS CVn variables' (objects with starspots).

http://variables.cn:88/ztf/ or doi.org/10.5281/zenodo.3886372.

A few examples of interesting light curves

P = 0.4362979 d

g band amplitude larger than r band amplitude: pulsator!

Folded light curve with large scatter

P = 0.080869 d

rotational variable with large amplitude?

P = 0.364225 d

It is the central star of the planetary nebula Ou 5:

We come back to the ~81.000 RS CVn stars and want to search ACVs within this group:

Assuming that 30 seconds are needed for the visual inspection of a light curve, an inspection of all stars within this group would take **81.000*30/60/60 = 675 hours!** Possible but impractical...

Therefore we need further constraints: Gaia temperature >6000 K (ACVs are hot!) variability amplitude <0.3 mag (typical for ACVs)

~1400 objects
time for visual inspection:
1400*30/60/60 ~ 12 hours: this is fine!

Homepage of Xiaodian Chen: Visualization of the light curves

ZTF Catalog of Periodic Variable Stars contains 781,602 periodic variables found based on ZTF Data Release 2. The source catalogs are available in the Article or Here (variables (64M), Suspected variables (57M)). The photometric catalog can be accessed from

We recommend to use "SourceID" to search LCs.

DOI 10.5281/zenodo.3886372

ID2:	SourceID:		RAdeg:		DEdeg:	
ID2	SourceID	\$	From	 	From	\$
			То	•	То	•
Per:	gmag:		rmag:		Ampg:	
Per	\$ gmag	1	rmag	.	Ampg	\$

Period: 1.0393949 ID: ZTFJ064847.25+020447.8 SourceID: 167603

$R.A.: 102.19690 \text{ DEC.: } 2.07995 \text{ Type: RSCVN } g: 14.544 \text{ r}: 14.502 \text{ Num}_g: 86 \text{ Num}_r: 75 \text{ Amp}_g: 0.071 \text{ Amp}_r: 0.110 \text{ R}_{21}: 0.434 \text{ } \phi_{21}: 3.697 \text{ } 0.110 \text{ } \phi_{21}: 0.434 \text{ } \phi_{21}: 0.$

Not fold LC fold LC To VizieR Download csv

 $\bigcirc\, DSS \, color \, \odot \, DSS \, blue \, \bigcirc \, 2MASS \, \bigcirc \, AllWISE \, \bigcirc \, GLIMPSE \, 360$

Try new period	
Period: Try new Period	SourceID: 167603
Submit this period	

J2000 ~

Every second counts...

T eff (Gaia DR2)	ZTF ID	ZTF Link	ID in Chen	our classification	Test	Type Chen e
		http://variables.cn:88/lcz.php?Period=&SourceID	=232692	HAGDOR Sebastian		
6668.15	ZTFJ205525.83+472338.1	http://variables.cn:88/lcz.php?SourceID=647388	647388	ACV + YSO in nebula?		RSCVN
8977.67	ZTFJ193501.38+282225.7	http://variables.cn:88/lcz.php?SourceID=466609	466609	ACV amp r>amp g		RSCVN
8609.5	ZTFJ064847.25+020447.8	http://variables.cn:88/lcz.php?SourceID=167603	167603	ACV amp r>amp g		RSCVN
8424	ZTFJ232236.78+512549.1	http://variables.cn:88/lcz.php?SourceID=766253	766253	ACV amp r>amp g		RSCVN
7923.5	ZTFJ060420.41+265942.2	http://variables.cn:88/lcz.php?SourceID=142876	142876	ACV amp r>amp g		RSCVN
7794.5	ZTFJ225454.64+542804.4	http://variables.cn:88/lcz.php?SourceID=752623	752623	ACV amp r>amp g		RSCVN
7786.5	ZTFJ022326.83+543425.3	http://variables.cn:88/lcz.php?SourceID=49348	49348	ACV amp r>amp g		RSCVN
7738	ZTFJ225444.50+572009.4	http://variables.cn:88/lcz.php?SourceID=752530	752530	ACV amp r>amp g		RSCVN
7184	ZTFJ050755.19+495727.2	http://variables.cn:88/lcz.php?SourceID=109643	109643	ACV amp r>amp g		RSCVN
7144.56	ZTFJ001616.48+622426.9	http://variables.cn:88/lcz.php?SourceID=6851	6851	ACV amp r>amp g		RSCVN
7117.5	ZTFJ003646.27+602633.8	http://variables.cn:88/lcz.php?SourceID=13878	13878	ACV amp r>amp g		RSCVN
7090.75	ZTFJ005928.14+603315.8	http://variables.cn:88/lcz.php?SourceID=21480	21480	ACV amp r>amp g		RSCVN
6620	ZTFJ235154.72+621521.9	http://variables.cn:88/lcz.php?SourceID=777806	777806	ACV amp r>amp g		RSCVN
6351.33	ZTFJ221304.21+533624.2	http://variables.cn:88/lcz.php?SourceID=724125	724125	ACV amp r>amp g		RSCVN
6323	ZTFJ014643.20+562950.9	http://variables.cn:88/lcz.php?SourceID=36511	36511	ACV amp r>amp g		RSCVN
6016	ZTFJ053725.01+382012.3	http://variables.cn:88/lcz.php?SourceID=126942	126942	ACV amp r>amp g		RSCVN
6471.75	ZTFJ195955.94+371754.2	http://variables.cn:88/lcz.php?SourceID=556995	556995	ACV amp r>amp g (g almost zero)		RSCVN
9001	ZTFJ071633.43-020221.4	http://variables.cn:88/lcz.php?SourceID=178837	178837	ACV antiphase	-1	RSCVN
8113.25	ZTFJ193403.66+632537.7	http://variables.cn:88/lcz.php?SourceID=462790	462790	ACV antiphase	-1	RSCVN
8062.89	ZTFJ183551.46+334749.7	http://variables.cn:88/lcz.php?SourceID=283584	283584	ACV antiphase	0	RSCVN
7994	ZTFJ194356.38+470830.9	http://variables.cn:88/lcz.php?SourceID=502294	502294	ACV antiphase	-1	RSCVN
7932	ZTFJ203922.63+262122.2	http://variables.cn:88/lcz.php?SourceID=628110	628110	ACV antiphase	0	RSCVN
7894.5	ZTFJ213829.74+332758.7	http://variables.cn:88/lcz.php?SourceID=692335	692335	ACV antiphase	-1	RSCVN
7850.33	ZTFJ203527.35+244945.9	http://variables.cn:88/lcz.php?SourceID=623156	623156	ACV antiphase	1	RSCVN
7805	ZTFJ190408.37+445439.3	http://variables.cn:88/lcz.php?SourceID=354952	354952	ACV antiphase: Sebastian ACV	-1	RSCVN
7557.21	ZTFJ012145.50+443625.8	http://variables.cn:88/lcz.php?SourceID=28191	28191	ACV antiphase	2	RSCVN
7470	ZTFJ222357.65+474904.5	http://variables.cn:88/lcz.php?SourceID=732962	732962	ACV antiphase	-1	RSCVN
7455	ZTFJ190831.71+511959.8	http://variables.cn:88/lcz.php?SourceID=371025	371025	ACV antiphase	0	RSCVN
7430	ZTFJ182441.88+485404.5	http://variables.cn:88/lcz.php?SourceID=267243	267243	ACV antiphase	-1	RSCVN
7391.5	ZTFJ072604.40-062330.9	http://variables.cn:88/lcz.php?SourceID=181600	181600	ACV antiphase	-1	RSCVN
7314.99	ZTFJ054550.47+533903.3	http://variables.cn:88/lcz.php?SourceID=131711	131711	ACV antiphase	-0	RSCVN
7271	ZTFJ212905.49+142755.5	http://variables.cn:88/lcz.php?SourceID=682595	682595	ACV antiphase	-1	RSCVN
7267.04	7751205210 551212746 4	http://wariablas.co.00/lat.php26auroalD_644036	644036	ACV antiphase	4	DECMAL

Examples of objects that were sorted out: unspecific light curve

Period: 2.2850449 ID: ZTFJ064412.64+002647.8 SourceID: 165303

R.A.: 101.05270 DEC.: 0.44662 Type: RSCVN g: 15.233 r: 14.988 Numg: 77 Numr: 71 Ampg: 0.107 Ampr: 0.092 R21: 0.142 921: 9.016

Not fold LC fold LC To VizieR Download csv

ODSS color ODSS blue O 2MASS O AllWISE O GLIMPSE 360

Examples of objects that were sorted out: unspecific light curve-similar object

Period: 2.8181805 ID: ZTFJ013000.32+570709.8 SourceID: 30784

R.A.: 22.50134 DEC.: 57.11941 Type: RSCVN g: 14.091 r: 13.841 Num_g: 176 Num_f: 200 Amp_g: 0.077 Amp_r: 0.057 R₂₁: 0.082 \u03c6₂₁: 8.558

○DSS color ○DSS blue ○2MASS ○AllWISE ○GLIMPSE 360

Not fold LC fold LC To VizieR Download csv

Examples of objects that were sorted out: likely Gamma Doradus pulsating variable

Period: 2.1672350 ID: ZTFJ200114.03+164645.3 SourceID: 560676

R.A.: 300.30849 DEC.: 16.77927 Type: RSCVN g: 15.332 r: 15.042 Numg: 63 Numg: 72 Ampg: 0.113 Ampg: 0.105 R21: 0.245 921: 3.945

ODSS color ODSS blue O2MASS OAllWISE OGLIMPSE 360

Not fold LC fold LC To VizieR Download csv

Only 2 types of objects were kept, which are almost certainly ACVs: <u>*r*</u> band amplitude > <u>*g*</u> band amplitude

Period: 1.9780172 ID: ZTFJ003646.27+602633.8 SourceID: 13878

R.A.: 9.19282 DEC.: 60.44275 Type: RSCVN g: 15.103 r: 14.897 Numg: 144 Numr; 155 Ampg: 0.089 Ampr; 0.134 R21: 0.557 \u03c621: 3.328

ODSS color ODSS blue O2MASS OAllWISE OGLIMPSE 360

Only 2 types of objects were kept, which are almost certainly ACVs: antiphase variations are present

J2000

Period: 3.5594593 ID: ZTFJ205319.55+313746.4 SourceID: 644926

R.A.: 313.33147 DEC.: 31.62956 Type: RSCVN g: 15.232 r: 15.086 Num_g: 69 Num_r: 68 Amp_g: 0.146 Amp_r: 0.126 R₂₁: 0.284 φ₂₁: 5.936

○DSS color ○DSS blue ○2MASS ○AllWISE ○GLIMPSE 360

Not fold LC fold

To VizieR Download

Result: 87 objects, light curves made with MS EXCEL

examples with amplitude r > g

Result: 87 objects, light curves made with MS EXCEL

Examples with antiphase variation

Depending on the investigated passbands, ACV stars may show considerably different light curve shapes:

Have fun with the new ACV objects!

Thank you very much and all the best for your seminar.

Thanks also to my colleague Stefan Hümmerich for his help in preparing this talk!