
A bit of background



We know this system since 1966 …
ApJ 150, 57



… in other words, since the early times of X-ray astronomy
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Data from almost 50 
years ago can be found 
in archives!



My acquaintance with Vela X-1 is not quote as old, but still …
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 It seemed like a straightforward idea – back in February 2017 …

Peter

Silvia

We talked so much 
about Vela X-1.  
But different people use 
different assumptions 
based on different 
published result

Feb. 2016 & 2017
How about 
summarising the 
observational 
knowledge in one 
paper?

Good idea!  
That should not be 
too hard to do …

3.75 years 
later …



Two unequal partners – a blue supergiant and a neutron star

Pablo Carlos Budassi, CC BY-SA 4.0, via Wikimedia Commons
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X-ray Binaries: a lot of physics on many different scales

© Felix Fürst



Essential length scales in the Vela X-1 system

! Roche lobe: bound to donor star.

! Bondi-Hoyle-Lyttleton: gravitational 

capture from wind.

! Ionization: X-rays may ionize inflowing 

gas.

! Corotation: Keplerian orbit at angular 

speed of neutron star rotation.

! Magnetosphere: neutron stars 

magnetic field dominates.

! Circularization: Keplerian orbit with 

angular momentum of accreted flow.

N
S

circularization

m
agnetosphere

corotation

ionization

BH
L accretion

R
oche lobe

orbital separation

105

106

107

108

109

1010

1011

1012

length scale [cm]

105 106 107 108 109 1010 1011 1012



A simplified model picture of the system

! Slightly eccentric, not quite 
circular orbit.


! Supergiant somewhat 
distorted towards neutron star 
➠ focused wind


! Accretion wake from 
hydrodynamical interaction.


! Photoionization wake from 
stalled wind close to neutron 
star.
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Diagnostics
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The Vela X-1 system has been also detected in the radio!

Recent result  
(van den Eijnden, et al., in prep.):

! Highly significant (~100 μJy) radio  

detection of Vela X-1 with ATCA. 

! Observation done by chance at  

mid eclipse. More observations 
done recently.


! Flat radio spectrum, like for a  
compact jet.


! Cannot exclude donor star as  
radio source yet, but this would  
also be interesting.



Line spectroscopy to derive wind parameters



X-ray fluorescence lines can yield information on state of matter

! Plasmas of different densities, temperatures,  velocities, 
and ionization states  reprocess the radiation from the 
neutron star, imprinting characteristic features.


! But interpretation complex and different model codes 
can yield quite different plasma parameters (Lomaeva et 
al. 2020).

Grinberg  et al. 
(2017)

Watanabe et al. 
(2006)

Lomaeva et al. 
(2020)



X-ray flux variations are observed on many time scales

! Orbital: ~1–10 d

! Within orbit: hours – days

! Pulse period: minutes 

On longer or shorter time scales no 
evident variation has been reported.



No two orbits are the same, but there are stable mean patterns

Van der Klis &  
Bonnet-Bideau (1977)  
COS-B X-ray detector 
1975 & 1976
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Absorption varies strongly along the orbit
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Various satellites find 
strong NH variations 
along orbit as expected 
from large structures.  
 
But same phases can 
look very differently at 
different times! 
 
Caveat: different 
spectral models and 
absorption modelling  
➟ absolute values not 
directly comparable. 



Apparently chaotic variability at shorter time scales

Kreykenbohm  et al. (2008) 
INTEGRAL ISGRI  
2003

Haberl & White  (1990)  
EXOSAT 
1985

hardness ratio
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The flux can change from one pulse to next

Kreykenbohm  et al. (2008) 
INTEGRAL ISGRI 
2003

Inoue  et al. (1984) 
Tenma 
1983

Börner  et al. (1984) 
Tenma 
1983



Pulse-averaged flux shows log-normal distribution 

background 

simulated 
light curve 

fitted  
Gaussian

observed

count rates 

Fürst et al. (2010):  
Bins of 283.5 s (~average 
over pulse), filtered to avoid 
eclipse. 


“Shock fronts and 
turbulence breaking up 
clumps can transfer any 
given distribution into a log-
normal like distribution.”



Modelling efforts



Modelling the right amount of variation from clumps can be difficult

‘Naive’ 1-D modelling of accreting clumps  
(shells)  by BHL accretion over-predicts  
observed variability strongly.


Simulated clump distribution gives more  
realistic light curve (Ducci et al. 2009),  
but clump sizes required uncomfortably large.


‘Realistic’ clump model for Vela X-1 under-predicts observed 
absorption variations,  
if assumed to be caused by  
clumps (Grinberg et al. 2017)

observed distribution



The X-ray radiation may self-regulate the wind

! Photoionization of the wind destroys ions responsible 
for acceleration  
➟ bubble of stagnant flow around neutron star 


! Krtička et al. (2012, 2015, 2016, 2018):  
photionization may lead to self regulated winds  
with HMXB close to forbidden area,  
where X-rays  
would fully  
stop wind.


! Radial solution of wind 
equation.


! Latest studies include 
wind clumping (favou-  
ring recombination) in
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Wind driving can become very complex

! Sander et al. (2018): Simulations of wind 
acceleration using updated Potsdam Wolf-
Rayet (PoWR) code including impact of X-
rays (but in 1D treatment).


! Hydrodynamically self-consistent  
solution for wind structure, accounting for 
16 elements and ~5000 lines in 
calculations. Different ions dominate 
acceleration at different distances.


! Wind velocity profile differs strongly from 
a “beta law”. 


! Wind speed very low in inner zone  
➟ impact on accretion (see later slides).


! Weak X-rays can increase wind driving in 
outer zone and terminal velocity. Strong  
X-rays disrupt wind.



Hydrodynamic models also predict variations

! 2D hydrodynamic models by Blondin et al. (1990, 1991, 1994) later picked up and 
enhanced by Manousakis et al. (2011, 2012, 2013, 2014) also yield clear variations.


! Radiative transfer 
not handled in 
detail, relying on  
critical ionization  
parameter as  
“on-off” switch.


! Wind clumping  
not (yet) included.


! Orbit approximated 
as circular.


! See also Čechura 
& Hadrava (2015) 
for Cyg X-1.



2D/3D Models of local accretion remain a challenge

! El Mellah et al. (2018): 3D hydrodynamic 
simulations of the wind in the vicinity of the 
accretor. Several spatial orders of magnitude, 
down to the NS magnetosphere within 
spherical stretched adaptive mesh.


! Inflow ‘extruded’ from realistic 2D simulation 
of clump formation close to star (Sundqvist et 
al. 2017). 



The knowns and unknowns of the 
Vela X-1 system



Distance and origin of this runaway HMXB system

this work
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Orbital parameters

! The orbital period is extremely well known 
(8.964357±0.000029 d), due to eclipses, but slight tension 
between last two determinations.


! Small but significant difference between zero points of 
orbital phase.


! Eccentricity very well determined from X-ray pulse timing 
(0.0898±0.0012).


! Inclination (73-90 deg) is  
major unknown factor for  
orbit scale ➟ impacts  
mass & radius  
determination!
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New spectral classification of mass donor 

! Different spectral classifications listed in 
SIMBAD: B0 to B0.5 and in luminosity 
class from Ib to Ia. 


! New spectral classification based on 
Galactic O-Star Spectroscopic Survey 
(GOSSS) and Gaia DR2 distance: 
spectral type & class: B0.2 Ia 


! Stellar parameters to be redone with Gaia 
EDR3 distances. Ongoing, results maybe 
this Friday.
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Blowing in the wind – at very different velocities

! Terminal wind 
speeds and 
velocity profiles 
derived very 
differently over 
the years.


! Major impact on 
accretion flow 
close to neutron 
star! 
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Between wind and disk accretion?
Simulation by Ileyk El Mellah 

see El Mellah et al. (2019)



A variable mass transfer?

! Filling factor (ratio between stellar and Roche 
Lobe radius) varying along orbit due to 
eccentricity and often >1.


➥ Either the inclination, and thus mass ratio 
between giant star and neutron star is on 
upper end of assumed distribution.


➥ Or have intermittent Roche-Lobe overflow at 
some orbital phases.


➥ Mass transfer may be more complicated than 
basic wind acceleration.

Roche Potential



How random are the torques on the neutron star?

! Long-term pulse period evolution usually described as random walk. 

! Caveat: period changes are  ‘measured’ between data points at least days apart, much 

longer time scales than flux  
variations.


! A convincing theory for  
wind-accreting systems 
is lacking.


! Some spectral evidence for  
temporary accretion disk 
formation (Liao et al. 2020).


! Vela X-1 is not in spin 
equilibrium. The corotation 
radius is much larger than 
the magneto- 
spheric radius!
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Probably a massive neutron star

! Vela X-1 is often quoted as example of massive 
(clearly > 1.4 M⦿, maybe  > 2 M⦿) neutron star.


! Full picture, taking into account inclination uncertainty 
is less clear, but leaning towards heavy solutions.


! Mostly in mass range where radius is almost stable 
according to theoretical equations of state (EOS) 
➟ probable radius 11–12.5 km.


! For highest possible masses 
interesting area of EOS  
would be sampled.

Falanga et al. 2015 (i=72.8±0.4)

Rawls et al. 2011, analytical (i=83.6±3.1)

Rawls et al. 2011, numerical  (i=78.8±1.2)
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Pulse profiles should allow to disentangle the emission geometry

! The pulse profile is complex at lower energies and overall 
usually rather stable.


! Doroshenko et al. (2011) found changed pulse pattern in 
“off-state”.


➡ In principle able to derive information on emission 
geometry.


! But complicated analysis if general relativity and realistic 
emission geometries are taken into account! Still quite a 
bit of work on models and comparison. 
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Cyclotron lines maybe more puzzling than enlightening

! Cyclotron Resonant Scattering Features found in 36 
sources so far (Staubert et al. 2019). 


! Most direct measure of magnetic field strength. Variations 
in observed centre energy ➟ changes in (height of) 
emission region. 

! Fürst et al. (2014): harmonic line varies with luminosity. No 
clear picture for fundamental.


! Ji et al. (2019, submitted): possible long-term trend in 
energy (Swift BAT).


➡ Will need improved accretion column models  
to better interpret the data.

Fundamental

Harmonic  E/2



Further progress



More observational data is available and being studied

! Major observational X-ray campaign in January 2019 
motivated by planned X-Calibur balloon observations 
(polarisation). The balloon failed early, but the X-ray data is 
being analysed.


! Radio observations at 4 orbital phases end Sep 2020. 
 

! Could still use:

○ More multiple high-resolution spectra in optical and 

near bands.

○ Newer UV spectra – we still rely on IUE (1978-1996).

○ High-resolution X-ray spectra on shorter time scales 

(XRISM, Athena).

○ X-ray polarization data (IXPE). 
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Some ideas for further improvements

! Find more ways for interacting detailed models, as single  
approach with all features would be intractable.


! Include effects of eccentric orbit in model calculations. 

! Model emission from accretion column based on available 

pulse profiles.

! Realistic calculations of absorbing structures (NH).

! Interferometric observations in the future (GRAVITY+) 

might be able to resolve the scale of the accretion radius 
and allow for independent constraints on stellar radius.


! Determine evolutionary stage of the donor star (on the way 
to red supergiant or back to blue and maybe to WR?).


! Retrace system history in Galactic potential – requires 
more high-resolution spectra for absolute radial velocity.


! Make right old data in archives accessible again (software 
issue).

accretion 
flow

ionising 
X-rays

accreted 
mass



Work continues to solve a complex, multi-scale puzzle

wind 
driving

structures 
& clumps

mass 
capture 
f(ρ, vrel)

magneto- 
spheric  
coupling

accretion 
column 
processesX-rays

emission 
pattern &  
spectrum

relativist. 
light  
bending

absorption

scattering

fluorescence

ionisation

wind feedback

disk? shell? 
outflows?

stellar  
surface 
heating

radiation 
transport

Thank you! 
Questions?


