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Introduction



Interaction of wind and magnetic field

Stellar winds of hot star are ionized ⇒ wind flows along the magnetic

field-lines.

Idealized MHD (σ → ∞):
∂B

∂t
= ∇× (v × B) ⇒ ∇× (v × B) = 0 for

∂B

∂t
= 0.

About 10% of OB stars have strong (measurable) magnetic fields with

surface strengths of the order of 0.1 – 10 kG (Aurière at al. 2007,

Romanyuk 2007): magnetic O stars (e.g., θ1 Ori C, HD 191612, Donati

et al. 2002, 2006) and chemically peculiar stars (He-rich and He-poor:

σ Ori E, CU Vir, Oksala et al. 2015, Kochukhov et al. 2014).

What is the influence of the magnetic field on the outflow?
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Wind magnetic confinement parameter η∗



Magnetic confinement parameter η∗

The effect of the the magnetic field is given by the ratio of the magnetic

field density and wind kinetic energy density:

η =
1
8πB

2

1
2
ρv2

.

With wind mass-loss rate Ṁ = 4πr2ρv and replacing B = Beq with

equatorial field strength, r = R∗ with the stellar radius, and v = v∞ with

the terminal velocity we derive

η∗ =
B2
eqR

2
∗

Ṁv∞
,

which is wind magnetic confinement parameter (ud-Doula & Owocki

2002).
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Weak confinement η∗ . 1

η∗ . 1: the wind energy density dominates over the magnetic field

energy density. The magnetic fields opens up. The wind flows radially.

(ud-Doula & Owocki 2002) 3



Strong confinement η∗ & 1

η∗ & 1: the magnetic field energy density dominates over the wind

energy density. Wind trapped by the magnetic field, collision of wind flow

from opposite footpoints of magnetic loops: magnetically confined wind

shocks (Babel & Montmerle 1997).

Arrows denote infall (the flow is not stable, ud-Doula & Owocki 2002). 4



Magnetic confinement parameter η∗ in real stars

η∗ =
B2
eqR

2
∗

Ṁv∞

• strong winds in massive stars (e.g., HD 191612): for

Ṁ ≈ 10−6M⊙ yr−1 the magnetic field of the order of 100 G is

needed for strong confinement

• weak winds in cool stars (e.g., Sun): for Ṁ ≈ 10−14M⊙ yr−1 the

magnetic field of the order of 1 G is enough for strong confinement

(e.g., corona)
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Alfvén radius

Reshuffling the confinement parameter in terms of Alfvén speed vA

η =
1
8πB

2

1
2
ρv2

=

B
2

4πρ

v2
=

v2
A

v2
=

1

M2
A

⇒ inverse of the confinement parameter represents the square of the

Alfvénic Mach number MA = v/vA.

The radial dependence (with dipolar field with B ∼ r−3 and v → v∞)

η =
1
8πB

2

1
2
ρv2

r2

r2
=

B2r2

Ṁv
∼ r−4

⇒ the wind speed overcomes the Alfvén speed (η = MA = 1) at Alfvén

radius RA, from fits of numerical simulation (ud-Doula et al. 2008)

RA

R∗

≈ 0.3 + (η∗ + 0.25)1/4

6



Wind quenching by magnetic confinement
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Closed loops: MA < 1 everywhere. The last closed loop: MA = 1 at the

loop apex. Wind leaves the star on open loops that have MA > 1 at the

loop apex ⇒ significant reduction of the net mass-loss rate: wind

quenching.

(Babel & Montmerle 1997, ud-Doula & Owocki 2008, Petit et al. 2017)
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Wind quenching by magnetic confinement

From the equation for the dipolar field r = Rapex sin θ
2, where Rapex is the

apex radius and θ is the colatitude, equating Rapex = RA gives that the

magnetic field is open for θ < θA given by

θA = arcsin

√

R∗

RA

.

Numerical simulations (ud-Doula et al. 2008) give slightly lower

maximum radius of closed magnetic loop as Rc ≈ R∗ + 0.7(RA − R∗).

The escaping wind fraction

fB =
Ṁ

ṀB=0

=

∫ θc

0

sin θ dθ = 1− cos θc = 1−
√

1− R∗

Rc

is of the order of 0.01− 0.1 for strong fields.

Magnetic hot stars may be progenitors of massive binary black holes

(Petit et al. 2017), which were detected as gravitational wave sources

(Abbott et al. 2016).
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The effect on mass flux

Magnetic field influences also the mass flux from the stellar photosphere.

The spherically symmetric stationary equation of motion has the form of

(v · ∇)v = −g∗r̂ + gradr̂ ,

where we neglected the gas pressure term, g∗ = GM(1− Γ)/r2, Γ is the

Eddington factor, and grad is the acceleration due to the lines,

grad =
1

1− α

κeFQ̄

c

(

dv/dr

ρcQ̄κe

)α

.

Here α and Q̄ are line force parameters (Castor, Abbott, & Klein 1975,

Gayley 1995) and F is the total flux at radius r .
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The effect on mass flux

In magnetic field the wind flows along the magnetic field along the

direction ŝ tilted by an angle θB with respect to the vertical direction ẑ .

Equation of motion has in the plane parallel case the form of

(v · ∇)(ŝ · v) = −g∗(ŝ · ẑ) + grad(ŝ · ẑ).

With v = vs ŝ we derive (v · ∇)(ŝ · v) = vs(ŝ · ∇)(vs) =

= µBvs
∂vs
∂z +

√

1− µ2
B
vs

∂vs
∂x = µBvs

∂vs
∂z without horizontal velocity

variations (∂vs∂x = 0). The radiative force is

(ŝ · ẑ)grad =
1

1− α
(ŝ · ẑ)κeFQ̄

c

(

ẑ · ∇(ẑ · v)
ρcQ̄κe

)α

=
µB

1− α

κeFQ̄

c

(

µB∂vs/∂z

ρcQ̄κe

)α

=
µB

1− α

κeFQ̄

c

(

µ2
B
vs∂vs/∂z

ṁrcQ̄κe

)α

,

where the radial mass flux is ṁr = µBρvs .
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The effect on mass flux

Substituting w ′ = (vs/g∗)∂vs/∂z the

momentum equation is

w ′ = −1 + Cµ2α
B
(w ′)α

with

C =
1

1− α

(

F

ṁrc2

)α(
Q̄Γ

1− Γ

)1−α

.

Equation has two, one, or no solution

according to the value of C (ṁr ).

C>CcC>Cc

C=CcC=Cc

C<Cc

w'

Cw'α
1+w'

1 3 5 7

1

3

5

7

gravity

w'+w'- w'c

Maximum mass-loss rate for tanget of the radiative force equal to one:

αCcµ
2α
B
w ′
c
α−1

= 1, from the momentum equation w ′
c = α/(1− α) and

Cc = α−α(1− α)α−1µ−2α
B

and

ṁr = µ2
BṁCAK,

where mCAK is the mass-flux for µB = 1 (Owocki & ud-Doula 2004).
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The effect of stellar rotation



Kepler corotation radius

Non-degenerate stars: in the strong confinement limit η∗ ≫ 1 the

magnetosphere rotates as a rigid body close to the star.

Kepler corrotation radius: the velocity of the corotationg matter equal to

the Kepler (orbital) velocity:

√

GM

RK

= ΩRK =
Vrot

R∗

RK → RK =

(

GM

V 2
rot

)1/3

.

In terms of orbital rotation fraction W :

W =
Vrot

Vorb

=
Vrot
√

GM

R∗

→ RK = W−2/3R∗.

The material may be centrifugally supported for r > RK.
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Dynamical versus centrifugal magnetospheres

dynamical magnetosphere RA < RK: material trapped in the

magnetosphere falls back to the surface (as in the case

without rotation)

centrifugal magnetosphere RA > RK: material is supported against

gravity by the magnetically enforced corotation: material

can stay in equilibrium in magnetosphere
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Centrifugal magnetospheres

The effective potential in the frame that corotates with the star

Φeff = −GM

r
− 1

2
Ω2r2 sin2 θ

in dimensionless units ξ = r/RK is

Ψeff =
RK

GM
Φeff = −1

ξ
− 1

2
ξ2 sin2 θ.
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Ψ
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f
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γ = 0.5 rK
γ = 1.0 rK
γ = 2.0 rK
γ = 4.0 rK

Minima of the potential along the field line ⇒ accumulation of matter

(Townsend & Owocki 2005, Prvák 2011).
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Centrifugal magnetospheres

The effective potential in the frame that corotates with the star

Φeff = −GM

r
− 1

2
Ω2r2 sin2 θ

in dimensionless units ξ = r/RK is

Ψeff =
RK

GM
Φeff = −1

ξ
− 1

2
ξ2 sin2 θ.

Minima of the potential along the field line ⇒ accumulation of matter

(Townsend & Owocki 2005, Prvák 2011).

⇒ hydrostatic hydrostatic equilibrium along the field line

ρ = ρ0

(

−µ
Φeff − Φ0

kT

)

⇒rigidly rotating magnetosphere (RMM) model
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Showcase of RMM model: σ Ori E: magnetosphere

φ = 0.0 φ = 0.2 φ = 0.4

φ = 0.6 φ = 0.8

(Oskala et al. 2015) 15



Showcase of RMM model: σ Ori E: Hα line
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(Oskala et al. 2015)
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Showcase of RMM model: σ Ori E: optical variability
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Rotating magnetospheres: observables

Many quantities are variable in magnetic stars with rotating

magnetospheres:

• Hα line emission (Sundqvist et al. 2012)

• visual photometry (Townsend et al. 2005, Wade et al. 2011, Krtička

2016)

• wind line profiles (Marcolino et al. 2013)

• continuum polarization (Carciofi et al. 2013)

• X-ray emission (Nazé et al. 2016)

• radio emission
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Massive star in the plot of RA/RK vs. luminosity

O stars: typically dynamical magnetospheres with Hα emission due to the

winds. B stars: dynamical vs. centrifugal magnetospheres with Hα

emission due to the circumstellar environment (Petit et al. 2013).
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Open questions

• 3D MHD for non-axisymmetric cases (non-aligned magnetic fields)

• MHD modelling of higher order multipoles

• magnetospheric leakage (Owocki & Cranmer 2018)
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Magnetic braking



Magnetic field in equatorial plane (spherical coordinates)

Frozen field condition for the φ component:

∇× (v × B) = 0 ⇒
1

r

d

dr
[r(vrBφ − vφBr )] = 0.

By integrating and evaluating the constant at R∗

where vr ≪ vφ: r(vrBφ − vφBr ) = −R2
∗ΩBr ,0.

Assuming B = B(r) the Maxwell’s equation

∇ ·B = 0 gives FB = r2Br = R2
∗Br ,0 and

Bφ

Br

=
vφ − rΩ

vr
.

Close to the star: vφ ≈ rΩ, Br ≫ Bφ: solid body

rotation. In outer regions: vφ < rΩ, negative Bφ,

no co-rotation.
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Wind equations in equatorial plane (spherical coordinates)

Momentum equation (neglecting the gas pressure)

ρ(v · ∇)v = −ρg∗r̂ + ρgradr̂ +
1

4π
(∇× B)× B

has in the azimuthal direction the form of

ρvr
d

dr
(rvφ) =

Br

4π

d

dr
(rBφ) .

From ρvr r
2 = const. and r2Br = const. we derive

dL
dr

= 0,

where

L = rvφ − rBrBφ

4πρvr
.

Angular momentum carried by the gas and by the magnetic field is

constant.
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Angular momentum loss

Inserting Bφ = Br (vφ − rΩ)/vr into equation for L we derive

vφ = rΩ
v
2
r
L

r2Ω
− v2

A

v2
r − v2

A

,

where the (radial) Alfvén speed is vA = Br/
√
4πρ. Azimuthal velocity

finite at the Alfvén radius RA where vr = vA:

L = R2
Aω.

Angular momentum (per unit of mass) behaves as if the star rotates as a

solid body out to the Alfvén radius (Weber & Davis 1967, Lamers &

Cassinelli 2000). Angular momentum due to the wind and magnetic

stresses.
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The spin down time

Stellar angular momentum loss J̇ = ṀR2
AΩ gives with the stellar angular

momentum J = ηMR2
∗Ω the spin down time

τspin =
J

J̇
≈ ηMR2

∗

ṀR2
A

.

For solar-type stars Ṁ = Ṁ(Ω) and RA = RA(Ω) and the Skumanich

(1972) law holds: Ω ∼
√
t.
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Spin down time in massive stars

With RA ≈ R∗η
1/4
∗ the spin down time in massive stars is from the

numerical simulations (ud-Doula et al. 2009)

τspin ≈ 1.1× 108 yr
η

(

Bp

1 kG

)

(

M

1M⊙

)

(

R∗

R⊙

)













( v∞
108 cm s−1

)

(

Ṁ

10−9M⊙ yr−1

)













1/2

Spin down time of σ Ori E 1.34 Myr

(Townsend et al. 2010) agrees with

1.7 Myr predicted from theoretical

wind models (Krtička 2014).
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Radio emission & planets



Radio emission

Collision of wind streams from oposite hemispheres: X-rays. Close to the

Alfvén radius: magnetic reconnection, generation of fast electrons.

Electrons propagate toward the star: gyrosynchrotron radiation. Collision

of electrons withe stellar surface: reflected electron cause beamed auroral

radio emission due to the coherent electron cyclotron maser emission.

(Leto et al. 2018)
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Problem with CU Vir mass-loss rate

CU Vir: mass-loss rate required to explain observed radio emission:

Ṁ ≈ 10−12M⊙ yr−1 (Leto et al. 2006). However, the star has

Teff = 13 kK, which is below the wind limit Teff = 15 kK (Krtička 2014).

There are no wind lines in HST+IUE spectra (Krtička et al. 2018).
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However: mass-loss rate from balance between the thermal pressure and

wind ram pressure: incorrect, there is hydrostatic equilibrium ⇒ wind

mass-loss rate could be lower ⇒ first evidence for purely metallic wind

(Babel 1996)?
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Magnetospheres of giant planets

The rapid rotation of the gas giant

planets, Jupiter and Saturn, leads to

the formation of magnetodisc

regions in their magnetospheric

environments. In these regions,

relatively cold plasma is confined

towards the equatorial regions, and

the magnetic field generated by the azimuthal (ring) current adds to the

planetary dipole, forming radially distended field lines near the equatorial

plane. The ensuing force balance in the equatorial magnetodisc is

strongly influenced by centrifugal stress and by the thermal pressure of

hot ion populations, whose thermal energy is large compared to the

magnitude of their centrifugal potential energy. The sources of plasma

for the Jovian and Kronian magnetospheres are the respective satellites Io

(a volcanic moon) and Enceladus (an icy moon).

(Achilleos et al. 2015)
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Magnetospheres of giant planets

Magnetodisks: rapid rotation + small angle between the magnetic and

rotational axes. Directly observed by spacecrafts (e.g., Voyager, Galileo,

Cassini).

(Achilleos et al. 2015)

Saturn: auroral emission from the boundary between open and closed

field lines due to interaction of magnetosphere and solar wind.

(Bunce et al. 2008)

Jupiter: radio emission due to synchrotron radiation of relativistic

electrons.

(Chang & Davis 1962)
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