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Derivation of hydrodynamical equations



Boltzmann equation

Particle distribution function F(t,x, €) gives the number of particles in
the element of the phase space dx d€ = dx; dxo dx3 d&; dés d€3 with
coordinates x and momenta £ as

F(t,x,&)dxd€.

The time evolution of the particle distribution function under the
influence of external force f acting on partice with mass m and taking
into account particle collisions is
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which is the Boltzmann equation. Here used the Einstein summation

convention for index h.



Boltzmann equation

Using the Poisson bracket
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o F) = 5006, ~ 96, o

the Boltzmann equation for the system that obeys the Hamilton equation

can be rewritten as
dF
SUGEESIN
coll

For stationary collisionless system the distribution function depends on
the particle energy only,

(H,F} =o0.



Momentum equations

The Boltzmann equation can be solved numerically to derive the particle
distribution function. However, for most of practical applications, the
distribution function is very close to the Maxwelian distribution expressed
at given location in the frame comoving with the fluid. In such a case,
just mean quantities are of real importance for the description of the
flow. These are moments of the Boltzmann equation

m/ Fdg =p, (0th moment, flow density),

1
- /EF dé€ = v, (1st moment, flow velocity).

These can be derived by multiplying the Boltzmann equation by m and
&/m and by integrating. However, the equation for n-th moment contains
n + 1-th moment. Consequently, we shall close the equations somehow to
avoid obtainig infinite set of equations. This is done for the equation for
the 2nd moment using thermodynamical relations for pressure.



The continuity equation

Multiplicating the Boltzmann equation by particle mass m and
integrating over the velocity space
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where

e n= [ Fd¢ is number density of particles,
e p = mn is the density,
o vy, =1 [&4F d€ is the mean speed.



The continuity equation

This gives
dp  O(pvn) _
ot ox
or
ap B

which is the continuity equation.



The continuity equation: interpretation

Integration over volume fixed in space gives

/8pdv /v pv)

or, using the Stokes theorem

x3
pdV = ?{ pvdS,

which is the expression of the law of conservation of mass.



The continuity equation: Lagrangian picture

Introducing the Lagrangian derivative, describing the time change of any
quantity g(t, x) following a moving fluid particle,

Dq(t, x) _ aq(t, x) n 9q(t, x) Oxn

Dt ot Ox, Ot’
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the continuity equation can be rewritten as
Dp
— V-v=0
Dt +p 5

which for incompressible fluid (p = const.) is

V-v=0.



Equation of motion

Multiplicating the Boltzmann equation by 5,- and integrating

[ Jo e g < (5)
2 3 4
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2= %%/fi&hf:dﬁ = maixh /(Ci+ vi)(ch + vn)F d€ =

mai {v,-vh/Fd£+vh/c;Fd£+v;/chFdE—l—/c,-chng} =
Xh

o (mnv,v,,+0+0+ph,)—a (pVvivh + phi) »

8= thfh[f,f:]oo df th ,hthd£ = —nf = —pP8i,
4 = 0 for conserved quantity (§), where
ch = &p/m — vy is the thermal speed,
e pni = m [ cicyF d€ is the pressure tensor, ppi = pdp;,
e g; = fi/mis force per unit of mass (acceleration). 8




Equation of motion

This gives

d(pvi) , O

— (pvi Oni) = pgis
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which is, after differencing and using the continuity equation,
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where I is the momentum flux density tensor, or

@
pat

the momentum equation. Introducing the Lagrangian derivative the

+pv-Vv=—-Vp+pg,

momentum equation has a form of Newton's second law

Dv
Pof = " VPtre



Energy equation

Multiplicating the Boltzmann equation by &;§;/m and integrating

/5,5, e+ /gm -+ /5,5, b de = /Eé}( S

e ig/g’ijdézm%/(cﬁ‘/’)(CJ+‘/J)Fd5* O (ovivy + i)
0
2= m2a /5'515””5—%—)% /(C1+Vl)(9+‘0)(ch+Vh)Fd€—

0
o (pViVjVh + Vhpij + ViPhj + ViPhi) ,
0, terms with h # i and h # j (direct integration),
—finv; — finv;, terms with h =i or h = j (per-partes),
4 = 0 when contraction is performed, where

 phij = | cnciciF d€/mis ppjj = 0 when neglecting viscosity.
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Energy equation

After the contraction and multiplication by % we derive

2 EV2+§ _|_i lvv2+§ Vv, — ov; ._0
ot 2p 2P 8xh 2Ph 2Ph pvi8i = U,

or, introducing the specific energy pe = %p,

0 pv? v2
a(/}e—FT)—&—V- [pv(e—F?)—&—pv} —pvg =0,

which is the energy equation.
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Energy equation: some manipulations

Multiplication of momentum equation by v; and summation gives

ov; n ov; op n
Vi— ViV, = —Vim Vi Iy
PVige T PVivhg o T PEi

or

o (1 ,\ 1,0p 0 (1 , 1,9 (pva) op
a(iﬂv>‘zv ot o ( POV TR Tox T o P8R

=0 (continuity equation)
Substracting this from the energy equation yields equation for the

internal energy
9(pe)

ot

which can be rewritten using the continuity equation as

+ V- (pev) = —pV - v,
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Energy equation: second law of thermodynamics

The conservation of entropy for isentropic flow requires that

Ds

— =0,

Dt
which for the specific entropy of ideal gas s = cy In(pv*) + const.
= cv In(pp~*) + const. is (using p = 3pe)

8 5 —x
% + v -V (pep~*) =0.
Derivating and multiplying by p* we arrive at
0 0
(pe) +V-(pev)—pev-v—%e—p—%ev-Vp:Q

ot ot
Eliminating the last two terms using the equation of continuity and
noting that » — 1 = % for ideal gas we derive the equation for the
internal energy once again

%—!—V-(pev):—pv-v.
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Many faces of the beast




Collecting the nuggets: the hydrodynamical equations

dp
E‘FV'(,OV)—O
0
pa—: +pv-Vv=-Vp+pg,

g +p_v2 + V.- |pv +V—2 + =
TR G pv et 3 pv| = pvg

- system of nonlinear first-order partial differential equations

- unknowns p, v, p, and € (4-equation of state)

- initial and boundary conditions crucial

- inviscid flow, no magnetic field

- some special analytic solutions, general solution only numerically

- stationary solutions are important (9/9t = 0, but v # 0)
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The hydrodynamical equation in planar symmetry

In a planar symmetry the hydrodynamic quantities do not depend on x
and y coordinates, there is no flow in x and y directions (v = v(z)z)
and the hydrodynamical equations are

dp 0 B
2t T ;) =0,

ov dov._ 10p

ot "oz = poz
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The hydrodynamical equations in spherical coordinates

In spherical coordinate system, the components of the velocity vector are
v = (v, vg, vg) and the components of force are g = (g, g9, 85). The
equation of continuity is

dp 10,, 0 1 0 B

E—&—ﬁa(r pvr)+ eae(sm@p vg) + Sin98—¢(pv¢)—0
and the components of equation of motion take the form of

v, ov, vy v, Ve Ovy Vg + V¢2> 10p

B0 " 6 " 7 68\ reing 0o ro p8r+gr’
Ovy Ovg vy Ovy Ve OVvp ViV V¢2, C0t9 1 8p
50 " “Br " r 68 | rsing 0o r r rpdl ™ &0,
Ovg Ovg Vo Ovy Vg Ovy  Vevg Vevgcotl 1 0p

0t+ " or +TW rsin6‘8—¢ r r __rpsin98_¢+g¢
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The hydrodynamical equations in spherical symmetry

In a spherical symmetry the hydrodynamic quantities do not depend on 6
and ¢ coordinates, there is no flow in @ and ¢ directions (v = v(r)r) and
the hydrodynamical equations are (v = v;)

ap 1 0

= (2 —
ot * r2 8r(r pv) =0,

ov ov 10p

ot T ar T oor
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The hydrodynamical equations in cylindrical coordinates

In cylindrical coordinate system, the components of the velocity vector
are v = (g, vy, v;) and the components of force are g = (gr, 8¢, &)

The equation of continuity is

10 0
T ﬁa_R(RpVR) + §8—¢(PV¢>) + @(Pvz) =0

and the components of equation of motion take the form of

OVR Ovgr Ve OVR OvR V35 . 1 8p
ot T"oR TR 1“0z R poR

8V¢ 8V¢ Vo 8V¢ 8V¢ VRVyp 1 8[)
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ot~ RoR TR s Foz T poz &%
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Hydrostatic equilibrium




Static case:

In a static case the equation of continuity is fulfilled identically and the
momentum equation leads to

Vp =pg

the equation of hydrostatic equilibrium. The energy equation Qraq = 0
gives the radiative equilibrium equation.
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Atmosphere in hydrostatic equilibrium

The equation of hydrostatic equilibrium in homogeneous gravitational
field directed along the z-axis is

dp_
dzi ng

which, using the ideal gas equation of state p = pkT /(umy), leads to

d(pT) _ _Hemn
dz kK
In isothermal atmosphere T = const. this has the solution
kT

pmng’

P = poeiz/Ha H=

where H is the atmospheric scale-height. For z — oo is p — 0, as it
should be.
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Atmosphere in hydrostatic equilibrium: spherical symmetry

The equation of hydrostatic equilibrium in spherically symmetric
isothermal case is

dp _
dr - pga
which, with g = GM/r?, has the solution

. umyGM 1
= X _— .
p=poexp ( — =~

There are two problems with this solution applied for gas spheres. For
r — 0 the equation is not applicable, because one should insert

M = M(r): Lane-Emden equation. Moreover, for r — oo is

p — po # pism- Solution: Bonnor-Ebert spheres with external pressure.
Matter may escape from the regions, where the thermal speed is higher
than the escape speed: atmospheric escape: loss of planetary
atmospheres, solar-type (coronal) winds.
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Lane-Emden equation

Consider a spherical mass in equilibrium. The hydrostaic equilibrium
equation is

o

r 7

The polytropic relation p = Cp**/" with the definition of mass inside

radius r, which is M(r) = 4w for pr'?dr’, gives after differentiation
L1472 )] _4nG
r2dr | pdr c "

Introducing new variables 6 and & via p = A" and & = r/«, where X is

arbitrary dimensional constant and

dp _ pGM(r)

C(1+n)
47TG/\1+1/n
we arrive at Lane-Emden equation

1d [ ,do )
?&@&)‘“
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Hydrostatic atmospheres with radiative force

The equation of hydrostatic equilibrium in spherically symmetric
atmosphere in radiative equlibrium is

dp n
dr P8 T P8rad;

kpL
4mcr?”

with the radiative force giaq = %f kpF, dv = The temperature is

given by the energy transport equation
a7 3  kplL
dr 4aT3 4mer?’
This can be rewritten in terms of p.q = (a/3)T* as
dprad 4aT3£ _ kpL
dr 3 dr Arcr?
Therefore, the equation of hydrostatic equilibrium is

= —pP8rad-

dptot _ d(p + prad) _
dr dr PE:
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Atmospheres close to the Eddington limit

Dividing the last two equations

dpor _ _dp 11— & 1 dp 1
dprad dprad 8rad r dprad r

where the generalized Eddington factor is

_ kplL
~ 4wcGM’

The derivative dp/dp;aq is a function of I only. Moreover, the the point
at which the envelope solution crosses the Eddington Imimit ' = 1 needs
to me an extremum in p (Gréafener et al. 2012).
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Envelope inflation close to the Eddington limit

** Logarithm of the Eddingtor factor I
(colors) in the praq — p plane with
Iglesias & Rogers (1996) opacities.

o
o
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Black arrows denote slopes
0.0 dp/dprad-

log,, (Pldyn cm?)
@

10g,0 (Prog/dyn cm®)

The numerical solution for 23 M, star almost precisely follows a path
with ' =1 and crosses the Eddington limit at the lowest gas pressure
(corresponding to the Fe-opacity peak). The gas density increases
outwards leading to density inversion. This explains why WR and LBV
stars have extended envelopes.

(Gréfener et al. 2012) -



Suggested reading

G. K. Batchelor: An Introduction to Fluid Dynamics
D. Mihalas & B. W. Mihalas: Foundations of Radiation Hydrodynamics
F. H. Shu: The physics of astrophysics: 1l. Hydrodynamics

A. Feldmeier: Theoretical Fluid Dynamics

26



	Derivation of hydrodynamical equations
	Many faces of the beast
	Hydrostatic equilibrium

