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ABSTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent
forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly differing initial states can evolve into consider-
ably different states. Systems with bounded solutions are shown to possess bounded numerical solutions.

A sirople system representing cellular convection is solved numerically, All of the solutions are found
to be unstable, and almost all of them are nonperiodic.

The feasibility of very-long-range weather prediction is examined in the light of these results.

1. Introduction

Certain hydrodynamical systems exhibit steady-state
flow patterns, while others oscillate in a regular periodic
fashion. Still others vary in an irregular, seemingly
haphazard manner, and, even when observed for long
periods of time, do not appear to repeat their previous
history.

These modes of behavior may all be observed in the
familiar rotating-basin experiments, described by Fultz,
et al. (1959) and Hide (1958). In these experiments, a
cylindrical vessel containing water is rotated about its
axis, and is heated near its rim and cooled near its center
in a steady symmetrical fashion. Under certain condi-
tions the resulting flow is as symmetric and steady as the
heating which gives rise to it. Under different conditions

Thus there are occasions when more than the statistics
of irregular flow are of very real concern.

In this study we shall work with systems of deter-
ministic equations which are idealizations of hydro-
dynamical systems. We shall be interested principally in
nonperiodic solutions, i.e., solutions which never repeat
their past history exactly, and where all approximate
repetitions are of finite duration. Thus we shall be in-
volved with the ultimate behavior of the solutions, as
opposed to the transient behavior associated with
arbitrary initial conditions.

A closed hydrodynamical system of finite mass may
ostensibly be treated mathematically as a finite collec-
tion of molecules—usually a very large finite collection
—in which case the governing laws are expressible as a
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Butterfly effect
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Logisticka rovnice — diskretni
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Chaotické kyvadlo
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Fraktaly

HOW LONG IS THE COAST OF BRITAIN?

How long is the coast of Britain?

Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638

B. B. Mandelbrot

Geographical curves are so involved in their detail that their lengths are often infinite or more
accurately, undefinable. However, many are statistically “self-similar,” meaning that each portion can be
considered a reduced-scale image of the whole. In that case, the degree of complication can be described by
a quantity D that has many properties of a “dimension,” though it is fractional. In particular, it exceeds the
value unity associated with ordinary curves.

1. Introduction

Seacoast shapes are examples of highly involved curves with the property that — in a statistical
sense — each portion can be considered a reduced-scale image of the whole. This property will be referred to
as “'statistical self-similarity.” The concept of “length” is usually meaningless for geographical curves. They
can be considered superpositions of features of widely scattered characteristic sizes; as even finer features
are taken into account, the total measured length increases, and there is usually no clear-cut gap or
crossover, between the realm of geography and details with which geography need not be concerned.

Quantities other than length are therefore needed to discriminate between various degrees of
complication for a geographical curve. When a curve is self-similar, it is characterized by an exponent of
similarity, D, which possesses many properties of a dimension, though it is usually a fraction greater that
the dimension 1 commonly attributed to curves. I propose to reexamine in this light, some empirical
observations in Richardson 1961 and interpret them as implying, for example, that the dimension of the
west coast of Great Britain is D = 1.25. Thus, the so far esoteric concept of a “random figure of fractional
dimension’ is shown to have simple and concrete applications of great usefulness.
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