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Stochastic processes and
an introduction to stochastic
differential equations

11.1 DETERMINISTIC AND STOCHASTIC
DIFFERENTIAL EQUATIONS

A differential equation usually expresses a relation between a function and
its derivatives. For example, if t>t, represents time, and the rate of growth
of a quantity y(t) is proportional to the amount y(¢) already present, then we
have

dy

3 ky, (11.1)
where k is a constant of proportionality. Equation (11.1) is called a first-order
differential equation because the highest order derivative appearing is the
first derivative. It is also called linear because both y and its derivative occur
raised to power 1.

Equation (11.1) may be viewed as a prescription or mathematical model for

finding y at all times subsequent to (or before) a given time ¢, at which the
value y, of y is known. This is expressed in the solution of (11.1),

W) = yoe*t ™), (11.2)

which has the same form as the Malthusian population growth law of
Section 9.1. It is also a formula for finding an asset value with compound
interest when the initial value is y,.

In the natural sciences (biology, chemistry, physics, etc.), differential equations
have provided a concise method of summarizing physical principles. An
important example of a nonlinear first-order differential equation is Verhulst’s

logistic equation:
d
l:ry<1—l>, (113)
dt y*



220  Stochastic processes

with r > 0. This equation is frequently used to model the growth of populations
of organisms. The quantity y* is called the carrying capacity whereas r is called
the intrinsic growth rate. It will be seen in Exercise 1 that the solution of
(11.3) which passes through the value y, at time t =t; is

y) = . (11.4)
[1 + <L— 1>e"’]
Yo

Figure 11.1 shows how populations evolve for different starting values. As
t — oo the population approaches the value y* asymptotically, which explains
the term carrying capacity. Since its inception by the Belgian mathematician
Verhulst (1838), the logistic equation has been used for many different
populations, including those of cancer cells (Thompson and Brown, 1987) as
well as human populations over countries (Pearl and Reed, 1920), continents
and the world (Tuckwell and Koziol, 1992, 1993).

The differential equations (11.1) and (11.3) we have thus far considered
are called deterministic because a given initial value determines the solution
completely for all subsequent times. The behaviour of the solution is totally
predictable and there are no chance elements. Put another way, the trajectory
y(1) is fixed (it is a particular function) and there are no haphazard or random
fluctuations.

Deterministic differential equations proved to be extremely powerful in

t

Figure 11.1 Showing solutions of a logistic differential equation for various initial
population sizes.
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some branches of classical physics and chemistry, but at the beginning of
the twentieth century the study of atomic and subatomic systems indicated
that deterministic theories were inadequate. Thus quantum mechanics, which
is fundamentally probabilistic, was formulated to describe changes in very
small systems (see for example, Schiff, 1955). Furthermore, in complex
systems, containing millions or billions of interacting particles, the application
of deterministic methods would have been so laborious that scientists also
devised probabilistic methods for them. Such considerations for large collec-
tions of atoms or molecules lead to the discipline of statistical mechanics
(see for example, Reichl, 1980).

In the latter part of the twentieth century quantitative methods have
become increasingly widely used in the study of intrinsically complex systems
such as arise in biology and economics. The use of deterministic methods is
limited so there has been a large and rapid development in the application of
probabilistic methods. One such very useful concept has been that of
stochastic differential equations.

In the case of deterministic differential equations which are useful for
quantitatively describing the evolution of natural systems, the solution is
uniquely determined, usually by imposing a starting value and possibly other
constraints. In the case of stochastic differential equations there are several
possible trajectories or paths over which the system of interest may evolve.
It is not known which of these trajectories will be followed, but one can
often find the probabilities associated with the various paths. The situation
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Figure 11.2a The three records on the left (A) show the fluctuations in the resting
electrical potential difference across a nerve cell membrane. These fluctuations can
be modelled with a stochastic differential equation involving a Wiener process — see
section 12.7. On the right (B) is shown a histogram of amplitudes of the fluctuations,
fitted with a normal density (from Jack, Redman and Wong, 1981).
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Figure 11.2b Here are shown the fluctuations in the price of a share (Coles—Myer
Limited) from week to week over a period of a few years. Such fluctuations can also
be modelled using a stochastic differential equation — see section 12.7.

is similar to that in the simple random walk which we studied in Chapter 7,
except that in most cases the time variable is continuous rather than discrete.
We could say that the quantity we are looking at wanders all over the place
in a random and thus unpredictable fashion.

Physical examples of quantities which might be modelled with stochastic
differential equations are illustrated in Figs 11.2a and 11.2b. In the first of
these we show a record of fluctuations in the electrical potential difference
across the membrane of a nerve cell in a cat’s spinal cord (a spinal motorneurone
which receives messages from the brain and sends messages to a muscle fibre
which may result in a movement). In the second example, the weekly
variations in the price of an industrial share are shown from May 1990 to
January 1993.

112 THE WIENER PROCESS (BROWNIAN MOTION)

The most useful stochastic differential equations have proven to be those
which involve either Wiener processes or Poisson processes. When Wiener
processes are involved, the solutions are usually continuous whereas when
Poisson processes are involved the solutions exhibit jumps. Most of our
discussion focuses on continuous processes so that our immediate concern
is to define Wiener processes and discuss their properties.

In Section 7.8 we considered a simple random walk and let the step size
get smaller as the rate of their occurrence increased. We took this to the
limit of zero step sizes and an infinite rate of occurrence, but did so in such
a way that the variance at any time neither vanished nor became unbounded.
In fact, the variance of the limiting random process at time ¢ was made to

equal t.
The symbol we employ for the limiting process, which we call the Wiener



The Wiener process 223

process, is W= {W(t),t > 0}. However, this process can be defined in a more
general way, which makes no reference to limiting operations. In this section
we will give this a more general definition, and discuss some of the elementary
yet important properties of W.

Before we give this definition we will define a large class of processes to
which both the Wiener process and Poisson process belong. This consists of
those processes whose behaviour during any time interval is independent of
their behaviour during any non-overlapping time interval. We will restrict our
attention to processes whose index set (see section 7.1) is continuous.

Definition Let X = {X(¢)} be a random process with a continuous parameter
set [0, T'], where 0 < T < co. Let n > 2 be an integer and suppose 0 <1y <t <
t<--<t,<T. Then X is said to be a random process with independent
increments if the n random variables

X(1)) — X(to), X(12) — X(1)); -, X(t,) — X(t5-1),
are independent.

Thus, increments in X which occur in disjoint time intervals are independent.
This implies that the evolution of the process after any time s>0 is
independent of the history up to and including s. Thus any process with
independent increments is a Markov process as will be shown formally in
the exercises. The converse is not true.

We have already encountered one example of an independent-increment
process in section 9.2 — the Poisson process. Before defining a Wiener process,
we mention that if the distributions of the increments of a process in various
time intervals depend only on the lengths of those intervals and not their
locations (i.e., their starting values), then the increments are said to be
stationary. In section 9.2 we saw that for a Poisson process N = {N(1),t >0},
the random increment N(t,) — N(t,) is Poisson distributed with a parameter
proportional to the length of the interval (¢,,,]. Thus a Poisson process has
stationary independent increments.

Definition A standard Wiener process W= {W(1),t>0}, on [0,T], is a
process with stationary independent increments such that forany 0 <1, <1, < T,
the increment W(t;) — W(z;) is a Gaussian random variable with mean zero
and variance equal to t; — t;; i.e.,
E[W(t;) — W(t))] =0,
Var[W(t) — W)=t — 1.
Furthermore,
w(0) =0,
with probability 1.
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The probability density p(x;t,,t,) of the increment of W in the interval
(t,,t,) is defined through

Pr{W(t,) — W(t,)e(x,x + Ax]} = p(x; 11, 15)Ax + 0(Ax).
From the definition of W we see that this is given by
P(X;ll,fz)=——-i—exp|:— .3 ’} (IL5)
\/(27Z(t2—l1)) 2, —ty)

In the case t, =0, it is seen that the random variable W(t,) has mean 0 and
variance t,. Thus, for any ¢ >0, W(z) is a Gaussian random variable with
mean 0 and variance t, so that its probability density p(x;?) is given by the
simple expression

1) 1 —xz}
p(x;t) = ———exp .

J(@2nt) 2f
The word ‘standard’ in the definition refers to the fact that the mean is
zero, the variance at ¢ is ¢ and the initial value is zero.

Sample paths

It can be proved for the random process defined above, that the sample paths
or trajectories are continuous with probability one. Sample paths are also
called realizations and correspond to a ‘value’ of the process when an
experiment is performed. That is, supposing it is possible to observe a
standard Wiener process over the time interval [0, T], we would see, with
probability one, a continuous function starting at the origin, wandering
around haphazardly and reaching some random end-value W(T) - as in
Fig. 11.3.
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Figure 11.3 A depiction of a few sample paths for a Wiener process.
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Note, however, that there are possibly discontinuous paths but these have
zero probability associated with them. Usually, attention is restricted to those
paths which are in fact continuous and in fact continuity of sample paths is
often included in the definition. This is a convenient way to discard the
problem of the discontinuous paths.

Although the probability of finding a continuous trajectory for W is one,
the probability is zero that at any time te[0, T] the path is differentiable.
This is considered to be a pathological property and is one reason why a
study of the Wiener process has been so interesting to mathematicians. This,
and the fact that sample paths have unbounded variation, are proved and
elaborated on in, for example, Hida (1980). An elementary consideration is
given in Exercise 3.

Mean value and covariance function

An important property of a random process X is its mean at time ¢, E(X(1)),
which is often called its mean value function, being a function of ¢ alone. We
have the mean and variance of W(t)immediately from the above definition.

To further understand the behaviour of a random process, it is useful to
know how its value at any time is connected with its value at any other time.
Although knowing the joint probability distribution of these values would
be nice, we may be content with a rougher indication. To this end we make
the following definition.

Definition The covariance function of a random process is the covariance (cf.
Chapter 1) of the values of the process at two arbitrary times.

Note that sometimes the covariance function is called an autocovariance
function to distinguish it from a covariance between two different processes.

It is also useful to define a class of processes whose covariance function
depends only on the difference between the times at which it is evaluated
and not on their location.

Definition If the covariance function Cov(X(s), X(7)) depends only on |t — s,
the random process X is said to be covariance stationary. Other terms for this
are wide-sense stationary or weakly stationary.
If X is a weakly stationary process, we may put

Cov(X(s), X(s + 1)) = R(7).
We can see for such a process that (see Exercises):

(a) the mean value function is a constant; and,
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(b) the covariance function is an even function:
R(t) = R(—1).

In the case of a standard Wiener process we will see that the following is

true.
The covariance function of a standard Wiener process is

Cov(W(s), W(t)) = min(s, t),

where min(.,.) is defined as the smaller of the two arguments.

Proof We utilize the fact that the increments of a Wiener process over
disjoint (nonoverlapping) time intervals are independent random variables
and hence have covariance equal to zero. With s <t we have

Cov[W(s), W(t) — W(s)]=0.

The quantity we seek can be written

Cov[W(s), W(t) + W(s) — W(s)].
But in general, if 4, B, and C are three random variables (see Exercises),
Cov[A4,B + C]=Cov[4,B] + Cov[4,C].
Thus,
Cov[W(s), W(t)] = Cov[W(s), W(t) — W(s)] + Cov[W(s), W(s)]

= Cov[W(s), W(s)]
=Var[W(s)] =s.

Had ¢ been less than s we would have obtained ¢ instead of s. Hence the
covariance is the smaller of s and ¢, which proves the result.

Note that the Wiener process is not therefore covariance-stationary as the
covariance of W(s) and W(t) depends directly on the magnitude of the smaller
of s or t. For further information on the topics we have dealt with in this
section, the reader may consult Papoulis (1965), Parzen (1962) and Yaglom

(1973).

11.3 WHITE NOISE

Although the Wiener process is of central importance in the theory of
stochastic differential equations, there is a useful related concept, called white
noise, which we introduce in this section.

The paths traced out by a Wiener process are with probability one not
differentiable. However, it is often convenient to talk about the derivative of
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W as if it did exist. We use the symbol w(t) for the ‘derivative’ of W(t), and
we call the random process w = {w(t), t > 0}, (Gaussian) white noise. However,
it must be remembered that, strictly speaking, this process does not have a
well-defined meaning — it is nevertheless heuristically useful.

The word noise, of course, refers to unwanted signals. If you are in a
crowded cafeteria or football stadium or surrounded by dense city traffic,
close your eyes and listen, you will hear a noise that seems an amorphous
assortment of meaningless sounds; you generally won’t be able to pick out
particular signals unless they originate close-by. This kind of background
noise is an acoustic approximation to white noise. Sound engineers have
devices called white noise generators which are used to test the acoustic
properties of rooms — the basicidea is to subject the chamber to all frequencies
at once.

The mean value and covariance functions of white noise can be obtained
from those of a Wiener process — as will be seen in the exercises. These turn
out to be

E[w(®)] =0,
Cov[w(s),w(t)] = d(t — s). (11.6)

Thus the covariance is zero whenever s # t and is very very large when s = t.

Covariance functions are often decomposed to see if there are regularities
present, especially in the form of periodicities or harmonics of various
frequencies. Such a decomposition is done using the following definition.
Note that we restrict our attention to real-valued processes.

Definition \The spectral density S(k) of a covariance-stationary random
process whosecovariance function is R(z),7 > 0, is given by'{he integral

\ @

Sk = f

cos(kr)R(r)det. (11.7)
The reader may recogr}ize this as the Fourier transform of R(t), recalling
that the latter is here an \éqen function Qf’l‘ Another name for S(k) is the
power spectrum — it indicates\the contributions from various frequencies to
the total activity of the proce\stk\ ’

A knowledge of the spectral density can be used to obtain the covariance
function using the following im',er'sio‘n\formula which is proved in courses of
analysis (see for example Wylie, 1960), ".\

1

R(t) = —Jm S(k)éas(kt)dk. (11.8)
/ 27_( A\ .

- ®©

Let us see how Varr‘ious harmonics in K(t) méﬁif@\st themselves in S(k).
Suppose S(k) we;e’very much concentrated around t}%\single frequency k,

/
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so we migh{ put S(k) = §(k — ko). Then

tochastic processes

t)= Lrﬁ S(k — ko) cos(kt)dk
2n

—®

1
= —cos(kgt),
5 (kot)

where we have used the substitution property of ¢ ¢ delta function (formula
(3.13)). Thus we see that a very large peak in the spectral density S(k) comes
about at k, if there is a singlg dominant frequéncy ko/2n in the covariance
function R(z). /

Let us consider white noise w
Equation (11.6), R(t) = 6(t). Substit ting this in the definition of the spectral
density gives

where we have usedAhe substitution property and the fact that cos(0) = 1.

This tells us tHat the spectral density of white hoise is a constant,
independent of the frequency. That is, all frequencies contriute equally, from
— o0 to oo, whereby we can see the analogy with ‘white light” Hence the
description/of the derivative of a Wiener process as (Gaussian) white noise.
It is realiZed that it is not physically possible to have frequencies dyer such
a huge/range. In engineering practice white noise generators have xut-off
frequéncies at finite values — they are called band-limited white noises. Sowge-
ifies white noise is called delta-correlated noise.

114 THE SIMPLEST STOCHASTIC DIFFERENTIAL
EQUATIONS - THE WIENER PROCESS WITH DRIFT

In this section we will take a first look at stochastic differential equations
involving Wiener processes. A more detailed account will be given in the

next chapter.
The increment in a standard Wiener process in a small time interval

(t,t + At] is
AW (1) = W(t + At)— W (1),

and we know from above that AW is normally distributed with mean zero
and variance At. We use a similar notation as in differential calculus and
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use the symbol dW(r) or dW to indicate the limiting increment or stochastic
differential as At — 0. The simplest stochastic differential equation involving
a Wiener process is thus:

dX =dw (11.9)
which states that the increments in X are those of W. The solution of (11.9) is
X(t)=X(0)+ W),

which states that the value of the process X at time t, namely the random
variable X(t), is equal to the sum of two random variables: the initial value
X(0) and the value of a standard Wiener process at time t. Equation (11.9)
is interpreted more rigorously as the corresponding integral

Jl dX(t)= [l dw(t),

0 J o

whose meaning will be explained in section 12.5. This gives
X(t)— X(0) = W(1) — W(0) = W(),

which is the same as (11.10) because from the definition, W(0) = 0, identically.

Notice that when writing stochastic differential equations involving a
Wiener process, we usually avoid writing time derivatives because, as we
have seen, these do not, strictly speaking, exist. However, we can, if we are
careful in our interpretation, just as well write (11.9) as

dX )
— = w(t),
dt

where w is white noise.

We may perform simple algebraic operations on a standard Wiener process.
For example, we can form a new process whose value at time ¢ is obtained
by multiplying W(t) by a constant ¢, usually assumed to be positive; adding
a linear function of time ut, where u can be negative, zero, or positive; and
giving a particular initial value X(0) = x,:

X(t) = xo + pt + aW(t) (11.10)

This defines a Wiener process with drift ut and variance parameter o. The
drift function ut here is linear, though any other deterministic function of
time can be added instead of ut. For the random process defined by (11.10)
we write the stochastic differential equation

dX =udt+odW, (11.11)

and say that (11.10) is a solution of (11.11) with a particular initial value.
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The following properties of a Wiener process with drift will be verified in
the exercises:
E[X(t)] = xq+ put,
Cov[X(s), X(t)] = o min(s, t).
Var[X(t)] = o?t.

To obtain the probability density function for the Wiener process with
drift, as defined by (11.10), we note, as proven in introductory probability
theory, that linear operations on a Gaussian random variable produce
another Gaussian random variable. Thus X(¢) must be a Gaussian random
variable with mean and variance as given above. Its probability density
function, conditioned on an initial value x,, is defined through either

Pr{x < X(t) < x + Ax| X(0) = x,}

X, | Xq)= lim )
p(x, t[xo) o Ax

or
p(x,t]x0)Ax = Pr{x < X(t) < x + Ax} + o(Ax),

where t > 0, — 00 < Xg, x < 00. This density must be given by

(x — xo— ,ut)zjl

o (11.12)

1
p(x, t[xo) = wp[—
2na’t

(Note that when dealing with continuous random variables as we are here,
we can put < rather than < in inequalities because single points make no
contribution.)

7

t

Figure 11.4 A depiction of a few sample paths for a Wiener process with drift
X(t) = xo + ut + oW(t) with xo =1, u=3, and s = L.
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In anticipation of the material in the next chapter, we mention that the
function p(x,t|x,), given in (11.12), satisfies a simple partial differential
equation called a heat equation. This will be familiar to students either from
calculus or physics courses and here takes the form,

2 a2
fp_ o0, E 0P (11.13)
ot dx 2 ox?
as will be verified in the exercises. It can be seen, therefore, that asserting
that the probability density of a Markov process satisfies this partial differen-
tial equation, is, for all intents and purposes, the same as saying that the

process is a Wiener process with drift.
Figure 11.4 illustrates how a Wiener process with drift might behave in
the case of a positive drift, with drift parameter y = 1 and variance parameter

o=1 when xy= 1.

11.5 TRANSITION PROBABILITIES AND THE
CHAPMAN-KOLMOGOROV EQUATION

Before considering a wide class of random processes which can be succinctly
described in the language of stochastic differential equations, we will lay the
groundwork for an analytical approach to studying their properties.

We saw in Chapter 8 that the fundamental descriptive quantity for Markov
chains in discrete time was the set (or matrix) of transition probabilities. For
the processes we considered, it was sufficient to specify the one-step transition
probabilities, as the probabilities of all other transitions could be obtained
from them. In particular, if the initial probability distribution was specified,
the probability distribution of the process could be obtained at any time
point — see Equation (8.11). Similarly, in Chapter 9, we saw that a set of
transition probabilities could be used to quantitatively describe the evolution
of Markov chains in continuous time.

The processes we are concerned with here are Markov processes in
continuous time which take on a continuous set of values. The evolution of
such processes is also specified by giving a set of transition probabilities as
alluded to in the case of a Wiener process with drift. In general, let {X(t),t > 0}
be such a process. Then the transition probability distribution function gives
the probability distribution of the value of the process at a particular time,
conditioned on a known value of the process at some earlier time.

Definition Let X be a continuous time random process taking on a continuous
set of values. The transition probability distribution function P(y, t|x, s), with
s <t, is the distribution function of X(r) conditioned on the event X(s) = x.



232  Stochastic processes

Thus,
P(y,t|x,5) = Pr{X(f) < y| X(s) = x},

where usually 0 < s <7< oo and —o0 <x,y < 0.

The variables (x, s) which refer to the state of affairs at the earlier time are
called backward variables, whereas those which refer to the later time are

called forward variables.
Furthermore, if P(y,t|x,s) is differentiable with respect to y, then its
derivative, with t,x and s fixed,
oP
p(y’[|xas) =
ay

is called the transition probability density function (tpdf) of the process X.

The Chapman—Kolmogoroy integral equation

In section 8.5 the Chapman—Kolmogorov equations were established for
discrete-time Markov chains. These equations imply that a transition from
one state to another in more than one time step must involve an intermediate
passage to one of the permissible values of the process. For the type of

N et ittt R

b —-———-

u

Figure 11.5 Showing how passage from (x,s) to (y,t) must involve passage to one of
a continuum of intermediate values, z, at some intermediate time, u. Summing
(integrating) over all possible paths gives the Chapman-Kolmogorov equation(11.14).
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process of concern to us here, the corresponding equation involves not a
sum but an integral over intermediate possible values, reflecting the fact that
the state-space is continuous. Refer to Fig. 11.5.

We see that a transition from state x at time s to state y at a later time ¢,
with associated probability density p(y,t|x,s), must, at some intermediate
time ue(s, t), involve passage to one of the permissible values z, here assumed
to be any real number. The probability of a transition from (x,s) to (z,u)
followed by a transition from (z,u) to (y,1) is proportional to the product
p(z,u|x,s)p(y,t|z,u). Integrating over these intermediate values gives the
Chapman—Kolmogorov equation,

zZ= ®©

p(y,t|x,s) =J p(y,t|z,u)p(z,ulx,s)dz. (11.14)

z ==l

It can be seen that this is an integral over all possible paths from (x,s) to
(y,t). The Chapman-Kolmogorov equation is useful for deriving differential
equations satisfied by the transition density function.

Using similar reasoning, we may find the (absolute) probability distribution
of the process at time ¢ from a knowledge of the initial distribution and the
transition probability density function or the transition probability distri-
bution function. Let f(x), where — o0 < x < o0, be the density of X(0). Then,
to get the probability of being in state y at t >0, we have to integrate over
all possible initial values x, weighted with f(x)dx and with the probability
of a transition from x to y:

X=

Pr{y< X(t)<y+dy} = {J f(x)p(y,t]|x,0) dx}dy.

X= -0

(Note that this is not a conditional probability.)
Similarly, the distribution function of X(t) is given by
z=Yy

<r‘ S(x)p(z,t]x,0) dx) dz

= J’x f(x)(f p(z,t\x,O)dz) dx.

f S(¥)P(y.t]x,0)dx,

Pr{X(r) <y} =j

That 1s,

Pr{X(t) <y}

where P is the transition probability distribution function.
In the special case, often encountered, where the initial value is not random
but a particular specified value x,, say, so that f(x) = 8(x — xq), we have, by
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the substitution property of the delta function,
Pr{X(t)<y}= J O(x — xq)P(y,t|x,0)dx

= P(y,t|X0,0),

as expected. Thus the absolute and transition probability distributions
coincide.

When one is seeking the properties of a process X, one may work with the
random variables {X(t),t > 0} directly, or one may work with the transition
probability functions. The latter approach is called the analytical approach
and is often more useful than the direct approach because it involves solving
differential equations, which is a long and much-studied discipline. The direct
approach usually involves stochastic integrals which we shall consider in
section 12.5.
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EXERCISES

1. Prove that the solution of the logistic differential equation (11.3) is in
fact given by (11.4). (Hint: Separate the variables by putting the equation
in the form f(y)dy = g(t)dt, and integrate each side.)
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Alternatively, the formula (see section 12.2)

= Kz
By

Y2(b— ay
b(y) = exp[ J (_?@dy}

can be employed — see the exercises.

with

125 STOCHASTIC INTEGRALS AND STOCHASTIC
DIFFERENTIAL EQUATIONS

We have seen in section 11.4 that a Wiener process with drift can be charac-
terized by the stochastic differential equation

dX = pdt + o dW.

The correct interpretation of this equation is in terms of an integral involving
a Wiener process — called a stochastic integral.

There are a large number of integrals which one may define in connection
with random processes. Mathematical complexities arise when integrals
involving W are considered because of the irregular properties of the paths
of W. This means that the methods of defining integrals given in real-variable
calculus courses cannot be used. We will consider stochastic integrals very
briefly and somewhat superficially — there are numerous technical accounts —
see for example Gihman and Skorohod (1972), Arnold (1974), Lipster and
Shiryayev (1977) or Oksendal (1985). Our main purpose is to enable the
reader to understand and know how to use a stochastic differential equation
of the general form

dX(1)=f(X(2), t)dt + g(X(t),t) dW(1).

Equivalently, dropping the reference to ¢ in the random processes, we can
write this as

dX = f(X,t)dt + g(X,t)dW, (12.20)

where f and g are real-valued functions, W is a standard Wiener process and
X is a random process which in cases of interest will be a diffusion process.
However, it must be stated at the outset that (12.20) does not always have
a unique interpretation. This situation arises for the following reason.
Equation (12.20) is interpreted correctly as implying the stochastic integral
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equation
t

X(t)=X©0)+ J FX(),t)dt + J” g(X(t), t')dw(r), (12.21)
0

0

and the process X so defined is called a solution of the stochastic differential
equation (12.20). Although the first integral here presents no problems, there
are many ways of defining the second one,

J g(X (), t)dW(r),

0

which is called a stochastic integral. Furthermore, the different definitions
can lead to various solutions, X, with quite different properties.

Despite this apparent ambiguity, there are two useful definitions which
are most commonly employed — the Ito stochastic integral and the Stratonovich
stochastic integral; and there is a simple relation between these two.

A note on notation. It is preferable in (12.20) not to ‘divide’ throughout by
dt, because as we have seen, the derivatives of W and hence of X do not
exist in the usual sense. However, as long as we keep that in mind, it 1s
possible to display (12.20) as a stochastic differential equation involving white
noise w, the ‘derivative’ with respect to time ¢ of W (see section 11.3):

dX

—=f(X,t) + g(X, )w,
dt

or perhaps even

X _ 0,0+ g(X. W,
dt

Stochastic differential equations written in this form are often called Langevin
equations.

Let us now make an important observation on the stochastic differential
equation (12.20). If the function g is identically zero, the differential equation
is deterministic and can be written in the usual way

dX 1,0

dt o
Assuming the initial value X(0) = x, is not random then X () is non-random
for all ¢ and this equation is solved in the usual way.

We expect that the behaviour of solutions of this deterministic equation
would be related to those of the stochastic differential equation (12.20), and
be close to them when the noise term g is small. We would be correct in
believing that, in particular, the expected value E[X(t)] of the solution of
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(12.20) would not be very far, in most cases, from the solution of the
deterministic equation.

This can be illustrated nicely with the Wiener process with linear drift ut
and variance parameter ¢. From section 11.4, this process has the stochastic
differential equation (11.11):

dX =pudt+odW.
Here
X, 0=n
and
gX,t)=o0.

If we put o =0 we obtain the deterministic differential equation
dX
Fiala
The solution of this with initial value x, is
X(t) = xo + put,

and this, as seen in section 11.4, is equal to the mean value function of the
process satisfying (11.11). The added noise makes the paths of X very irregular,
but the mean value is still ut. This was depicted in Fig. 11.4.

Heuristic interpretation

Before proceeding more formally, let us describe roughly how we can under-
stand an equation of the form (12.20). This can perhaps best be accomplished
by writing the related difference equation

AX = f(X,t)At + g(X, ) AW. (12.22)

Here we may regard the (random) increment in X in the time interval
(t,t + At] as having two components. The first component is equal to the
value of f(X,1) at the beginning of the time interval multiplied by the length
At of the time interval. The second component is the value of g(X, ) at the
beginning of the time interval, multiplied by the (random) increment AW =
W(t + At) — W(t) that occurs in a standard Wiener process in At. As we have
seen, AW is a Gaussian random variable with mean zero and variance At.
We have essentially outlined a method of simulation of the stochastic
differential equation (12.20) — this will be elaborated on below.

It should be realized, however, that even though the functions f and g are
functions in the usual deterministic sense, both the components of the
increment in X, namely, fAt and gAW, are random variables, because



