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A review of basic
probability theory

This is a book about the applications of probability. It is hoped to convey that
this subject is both a fascinating and important one. The examples are drawn
mainly from the biological sciences but some originate in the engineering,
physical, social and statistical sciences. Furthermore, the techniques are not
limited to any one area.

The reader is assumed to be familiar with the elements of probability or to be
studying it concomitantly. In this chapter we will briefly review some of this
basic material. This will establish notation and provide a convenient reference
place for some formulas and theorems which are needed later at various
points.

1.1 PROBABILITY AND RANDOM VARIABLES

When an experiment is performed whose outcome is uncertain, the collection
of possible elementary outcomes is called a sample space, often denoted by €2.
Points in £, denoted in the discrete case by w,, i=1,2,... have an associated
probability P{w;}. This enables the probability of any subset 4 of Q, called an
event, to be ascertained by finding the total probability associated with all the
points in the given subset:

P{A}= ZA P{o;}
We always have
0 P{A} <1,

and in particular P{Q} =1 and P{J} =0, where (¥ is the empty set relative
to Q.

A random variable is a real-valued function defined on the elements of a
sample space. Roughly speaking it is an observable which takes on numerical
values with certain probabilities.

Discrete random variables take on finitely many or countably infinitely
many values. Their probability laws are often called probability mass functions.
The following discrete random variables are frequently encountered.
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Binomial

A binomial random variable X with parameters n and p has the probability law

pv=Pr{X =kj =(:)p"q""‘ (L1)

= b(k; n, p), k=0,1,2,...,n,

where 0 < p< 1,9 =1 — pand nis a positive integer ( = means we are defining
a new symbol). The binomial coefficients are

n\ n!
k] k(n—k\

being the number of ways of choosing k items, without regard for order, from n
distinguishable items.
When n =1, so we have

Pr{X=1}=p=1-Pr{X =0},

the random variable is called Bernoulli.
Note the following.

Convention
Random variables are always designated by capital letters (e.g. X, ¥) whereas
symbols for the values they take on, as in Pr {X = k}, are always designated by

lowercase letters.
The converse, however, is not true. Sometimes we use capital letters for non-

random quantities.

Poisson

A Poisson random variable with parameter 1>0 takes on non-negative
integer values and has the probability law

P
k!

p=Pr{X=k}= . k=0,1,2,.... (12)

1

For any random variable the total probability mass is unity. Hence if p, is
given by either (1.1) or (1.2),

Zpk=1

k

where summation is over the possible values k as indicated.
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For any random variable X, the distribution function is
F(x)=Pr{X<x}, —oo<x<oo.

Continuous random variables take on a continuum of values. Usually the
probability law of a continuous random variable can be expressed through its
probability density function, f(x), which is the derivative of the distribution
function. Thus

1= SRy

— lim F(x + Ax) — F(x)

Ax—0 Ax
< - <
— lim Pr{X<x+Ax}—-Pr{X <x} (13)
Ax~0 Ax
<
- lm Pr{x <X <x+Ax}
Ax—0 Ax
~ lim Pr{Xe(x,x + Ax]}
Ax—0 Ax

The last two expressions in (1.3) often provide a convenient prescription for
calculating probability density functions. Often the latter is abbreviated to
p.d.f. but we will usually just say ‘density’.

If the interval (x,,x,) is in the range of X then the probability that X
takes values in this interval is obtained by integrating the probability density
over (x;,X,).

Prix, <X <x,}= szf(x) dx.

The following continuous random variables are frequently encountered.

Normal (or Gaussian)

A random variable with density

f(x)= 21 zexp{—(xz;f)z} , — 0 <X <00, (14)

no

where —o0o <p< oo and 0<g?< o0,

is called normal. The quantities 4 and ¢? are the mean and variance
(elaborated upon below) and such a random variable is often designated
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N(u,0). If £ =0 and ¢ =1 the random variable is called a standard normal
random variable, for which the usual symbol is Z.

Uniform

A random variable with constant density

1 |
= - €x< ,
f(x) e w<asx<b<w

is said to be uniformly distributed on (a, b) and is denoted U(a, b). ffa=0,b =1
the density is unity on the unit interval,

f)=1, 0<xx<l

and the random variable is designated U(0, 1).

Gamma

A random variable is said to have a gamma density (or gamma distribution)
with parameters 4 and p if

AAx)p~le~ >
L(p)

The quantity I'(p) is the gamma function defined as

fx)=

r x=20; A, p=>0.

r(;;):f x*~le*dx, p>0.
0

When p = 1 the gamma density is that of an exponentially distributed random

variable
f(x)=4e | x>0

For continuous random variables the density must integrate to unity:

U f(x)dx j

where the interval of integration is the whole range of values of X.
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1.2 MEAN AND VARIANCE
Let X be a discrete random variable with
PriX=x)=p, k=12,....

The mean, average or expectation of X is

LE(X) = ;pkxk.

For a binomial random variable E(X)=np whereas a Poisson random
variable has mean E(X)= 4.
For a continuous random variable with density f(x),

EX)= fo(x) dx.‘
.'

If X is normal with density given by (1.4) then E(X)= y; a uniform (a, b)
random variable has mean E(X)=%(a + b); and a gamma variate has mean
E(X)= p/A.

The nth moment of X is the expected value of X™

pot  if X is discrete,
EXm=1p
jx" f(x)dx if X is continuous.

If n = 2 we obtain the second moment E(X?). The variance, which measures the
degree of dispersion of the probability mass of a random variable about its
mean, is

Var (X) = E[(X — E(X))]

= E(X?)— EX(X).
The variances of the above-mentioned random variables are:
binomial, npg; Poisson, 4; normal, ¢%; uniform, i5(b — a)*; gamma, p/A%.

The square root of the variance is called the standard deviation.

1.3 CONDITIONAL PROBABILITY AND
INDEPENDENCE

Let A and B be two random events. The conditional probability of A given Bis,
provided Pr{B} #0,
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Pr{4B} |

| Pr{4} = P (8] |

where AB is the intersection of A and B, being the event that both 4 and B
occur (sometimes written A N B). Thus only the occurrences of A which are
simultaneous with those of B are taken into account. Similarly, if X,Y are
random variables defined on the same sample space, taking on values
xpi=1,2,...,y,j=1,2,...,then the conditional probability that X = x; given
Y=y;is, if Pr{Y =y} #0,

Pr{X=x,Y=y;}

Pr{X=xi|Y=yj}= Pr{Y-__—_y} A
J

the comma between X =x; and Y = y; meaning ‘and’.
The conditional expectation of X given Y = y; is

EX|Y=y)= ) xPr{X=x|Y =y}

The expected value of XY is
EXY)= inJ’jPr {X=x,Y=yp;,
ij

and the covariance of X, Y is
Cov(X,Y)=E[(X — E(X))(Y — E(Y))]
= E(XY)— E(X)E(Y).
The covariance is a measure of the linear dependence of X on Y.
If X, Y are independent then the value of Y should have no effect on the

probability that X takes on any of its values. Thus we define X, Y as
independent if

Pr {X = xi‘ Y = yj} = PI‘ {X = x,-}, all l,]
Equivalently X, Y are independent if
Pr{X=x,Y=y}=Pr{X=x}Pr{Y=y,

with a similar formula for arbitrary independent events.
Hence for independent random variables

E(XY)= E(X)E(Y),

so their covariance is zero. Note, however, that Cov (X, Y) = 0 does not always
imply X, Y are independent. The covariance is often normalized by defining
the correlation coefficient

_Cov(X,Y)

Pxy =
0xOy
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where oy, gy are the standard deviations of X, Y. py, is bounded above and
below by

|~ 1<px <1

Let X, X,,...,X, be mutually independent random variables. That is,
Pr{X,eA,,X,€4,,...,X,€4,}
=Pr{X,ed,;}Pr{X,ed,}... Pr{X,eA,},
for all appropriate sets A4,,..., A,. Then

\\Var( i; X i) = i; Var (;I

so that variances add in the case of independent random variables. We also
note the formula

Var(aX + bY)=a? Var(X) + b2 Var(Y),

which holds if X,Y are independent. If X,,X,,...,X, are independent
identically distributed (abbreviated to i.i.d.) random variables with E(X,) =y,
Var(X,) = o2, then

If X is arandom variable and {X,, X ,,..., X,} are i.i.d. with the distribution
of X, then the collection {X,} is called a random sample of size » for X.
Random samples play a key role in computer simulation (Chapter 5) and of
course are fundamental in statistics.

14 LAW OF TOTAL PROBABILITY

Let Q be a sample space for a random experiment and let {4,,i=1,2,...} bea
collection of nonempty subsets of Q such that

) Ad;=0, i#);
(i) uA;=Q.

(Here & is the null set, the impossible event, being the complement of .)
Condition (i) says that the A; represent mutually exclusive events. Condition (ii)
states that when an experiment is performed, at least one of the 4; must be
observed. Under these conditions the sets or events {4,,i = 1,2,...} aresaid to
form a partition or decomposition of the sample space.
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The law or theorem of total probability states that for any event (set) B,

Bi{B} = ; Pr {B|A4;} Pr{4;}

A similar relation holds for expectations. By definition the expectation of X
conditioned on the event A4, is

EX|A)= zk:xk Pr{X =x,|A;},
where {x,} is the set of possible values of X. Thus
EX)= ; X Pr{X = x,}
= ; X Z': Pr{X =x,|A;} Pr{4;}
= 2‘: Pr{4;} Xk: X Pr{X =x.|A4}.

Thus

[

tE(X) = Y E(X|4)Pr (4}

which we call the law of total probability applied to expectations.
We note also the fundamental relation for any two events A4, B in the same
sample space:

i Pr{AuUB}=Pr{A4} +Pr{B} —Pr{AB}

where 4 U Bis the union of 4 and B, consisting of those points which are in 4 or
in B or in both 4 and B.

1.5 CHANGE OF VARIABLES

Let X be a continuous random variable with distribution function Fy and
density fy. Let

y=g(x)

be a strictly increasing function of x (see Fig. 1.1) with inverse function
x = h(y).

Then
Y = g(X)

is a random variable which we let have distribution function Fy and density f.
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s(x)

Figure 1.1 g(x) is a strictly increasing function of x.

It is easy to see that X < x implies Y < g(x). Hence we arrive at
Pr{X <x}=Pr{Y <g(x)}
By the definition of distribution functions this can be written
Fx(x) = Fy(g(x)). (1.5)

Therefore
Fy(y) = Fx(h(y)).

On differentiating with respect to y we obtain, assuming that h is
differentiable,

aFy _dFy| dh
dy dx |undy

or in terms of densities
d
J0) = N5 (19)
y

If y is a strictly decreasing function of x we obtain
Pr{X <x}=Pr{Y > g(x)}
Working through the steps between (1.5) and (1.6) in this case gives

dh
fy(y)=fx(h(y))(—5y—). n
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Both formulas (1.6) and (1.7) are covered by the single formula

fi0)= fxm(y»[gfg |

where | | denotes absolute value. Cases where g is neither strictly increasing
nor strictly decreasing require special consideration.

1.6 TWO-DIMENSIONAL RANDOM VARIABLES

Let X, Ybe random variables defined on the same sample space. Then their
joint distribution function is

Fyy(x, ) =Pr{X <x,Y<y}.
The mixed partial derivative of Fyy, if it exists, is the joint density of X and Y:

0*Fyy
fxy(ny) - axay .

As a rough guide we have, for small enough Ax, Ay,
Sar( VAxAy ~Pr{Xe(x,x + Ax],Y e(y,y + Ay]}.

If X,Y are independent then their joint distribution function and joint
density function factor into those of the individual random variables:

Fyy(x, y) = Fx(x)Fy(y),
Jxr%, ) = fX)fy).

In particular, if X, Y are independent standard normal random variables,

(1 — x? 1 —y?
fXY(x9y)—(ﬁ7;exp{ 2 })(\/Z—nexp{ 2 })’ —oo<x,y<oo,

which can be written

(1.8)

I
Ferl )= 5-exp {~ 3= + )}

In fact if the joint density X, Y is as given by (1.8) we may conclude that X, Y
are independent standard normal random variables.

Change of variables

Let U, V be random variables with joint density fy,(u,v). Suppose that the
one-one mappings
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means that 5% of the time, values of x> greater than the critical value occur
even when H, is true. That is, there is a 5% chance that we will (incorrectly)
reject H, when it is true.

In applying the above x2 goodness of fit test, the number of degrees of
freedom is given by the number n, of ‘cells’, minus the number of linear
relations between the N, (There is at least one, 3’ N; = N.) The number of
degrees of freedom is reduced further by one for each estimated parameter
needed to describe the distribution under H,,.

It is recommended that the expected numbers of observations in each
category should not be less than 5, but this requirement can often be relaxed. A
table of critical values of x? is given in the Appendix, p. 219.

For a detailed account of hypothesis testing and introductory statistics
generally, see for example Walpole and Myers (1985), Hogg and Craig (1978)
and Mendenhall, Scheaffer and Wackerly (1981). For full accounts of basic
probability theory see also Chung (1979) and Feller (1968). Two recent books
on applications of probability at an undergraduate level are those of Ross
(1985) and Taylor and Karlin (1984).

1.8 NOTATION

Little o

A quantity which depends on Ax but vanishes more quickly than Ax as Ax —0
is said to be ‘ittle o of Ax’, written o(Ax). Thus for example (Ax)? is o(Ax)
because (Ax)? vanishes more quickly than Ax. In general, if

fim 7% _,
Ax—0Q Ax
we write
g(Ax) = o(Ax).

The little o notation is very useful to abbreviate expressions in which terms
will not contribute after a limiting operation is taken. To illustrate, consider
the Taylor expansion of e*:

Ax (Ax)*  (Ax)®
e*=1+Ax+ T + 30 + .-
=1+ Ax + o(Ax).
We then have
Ax_.
—d—e" = lim ¢ 1
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- lim 14+ Ax+o(Ax)—1

Ax—0 Ax
- Jim e+
=1
Equal by definition
As seen already, when we write, for example,
g=(1-p)

we are defining the symbol g to be equal to 1 — p. This is not to be confused
with approximately equal to, which is indicated by =.

Unit step function
The unit (or Heaviside) step function located at x, is
0, x<xg
Hlx—=xo) = {1, X 2 Xq.
Thus H(x — x,) has a jump of + 1 at x, and it is right-continuous.
iid.
As seen already, the letters iid. stand for independent and identically
distributed.

Probability

Usually the probability of an event A is written
Pr{4}

but occasionally we just write
P{A}.
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