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Manly (1984) and references therein; see also Cormack (1968) and the
conference article of the same author (1973) who begins with the following
remarks:

Many of the papers in this volume are concerned with the process of describing the
development of an animal population by a mathematical model. The properties of such
a model can then be derived, either by elegant mathematics or equally elegant
computer simulation, in order to describe the future state of the population in terms of
certain initial boundary conditions. The model becomes of scientific value when such
predictions can be tested, which requires in turn that the mathematical symbols can be
replaced by numbers. The parameters of the model must be estimated from data of a
type that a biologist can collect about the population he is studying.

For an introductory treatment written for biologists, see Begon (1979).

3.3 THE POISSON DISTRIBUTION

We recall the definition and some elementary properties of Poisson random
variables.

Definition A non-negative integer-valued random variable X has a Poisson
distribution with parameter 4 > 0 if

e Ak
K !

p=Pr{X=k}=

From the definition of e* as ) A*/k! we find
0

k=0,1,2,... 3.7)

i Pr{X=k}=1

The mean and variance of X will easily be found to be
E(X)=Var(X)=A

The shape of the probability mass function depends on 4 as Table 3.1 and the
graphs of Fig. 3.2 illustrate.

Table 3.1 Probability mass functions for some Poisson random variables

Po P1 P2 Ps 2 Ds Do P Ds
.607 303 076 013 002 <.001

L

2

1 .368 368 184 061 015 003 <.001

2 135 271 271 180 .090 036 012 003 <.001
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Figure 3.2 Probability mass functions for Poisson random variables with various
parameter values.

There are two points which emerge just from looking at Fig. 3.2:

(i) Poisson random variables with different parameters can have quite
different looking mass functions.

(ii) When A gets large the mass function has the shape of a normal density (see
Chapter 6).

Poisson random variables arise frequently in counting numbers of events.
We will consider events which occur randomly in one-dimensional space or
time and in two-dimensional space, the latter being of particular relevance in
ecology. Generalizations to higher-dimensional spaces will also be briefly
discussed.

34 HOMOGENEOUS POISSON POINT PROCESS
IN ONE DIMENSION

Let ¢ represent a time variable. Suppose an experiment begins at ¢ = 0. Events
of a particular kind occur randomly, the first being at T, the second at T, etc.,
where T, T,, etc., are random variables. The values t; of T;,i=1,2,... will be
called points of occurrence or just events (see Fig. 3.3).

e ——> 1t

t=0 ‘tl 't2 't3

Figure 3.3 Events of a particular kind occur at ¢,, t,, etc.
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Let (s, s,] be a subinterval of the interval [0,s] where s < co. Denote by
N(s,,s,) the number of points of occurrence in (s;,s,]. Then N(sy,s,) is a
random variable and the collection of all such random variables, abbreviated
to N, for various subintervals (or actually any subsets of [0, s])is called a point
process on [0,s].

Definition N is an homogeneous Poisson point process with rate A if:

(i) for any 0<s, <s,<s, Ms,s;) is a Poisson random variable with
parameter A (s, —$,);

(i) for any collection of times 0 <s, <s, <S$;... <§,<s5, where n>2, the
random variables {N(s;—,,5), kK =1,2,...,n} are mutually independent.

We see therefore that the number of points of occurrence in (0, t], which we
denote by just N(t), is a Poisson random variable with parameter At. Also, the
numbers of points falling in disjoint intervals are independent.

Now, the expected value of N(t) is At and this is also the expected number of
points in (0, £]. Thus the expected number of points in the unit interval (0, 1], or
any other interval of unit length, is just A. Hence the description of A as the rate
parameter, or as it is often called, the intensity of the process. The process is
called homogeneous because the probability law of the number of points in
any interval depends only on the length of the interval, not on its location.

We will now derive some properties of interest in connection with the
distances (or time intervals) between points of occurrence (events) when the
Poisson point process is defined on subsets of [0, co). The role of s will now
change.

The waiting time to the next event
Consider any fixed time point s > 0. Let T, be the time which elapses before the
first event after s. Then we have the following result.

Theorem 3.3 The waiting time, T,, for an event is exponentially distributed
with mean 1/4.

Note that the distribution of T, does not depend on s. We say the process
has no memory, a fact which is traced to the definition since the numbers of
events in (s;,,] and (s,, s3] are independent.

Proof First we note that the probability of one event in any small interval of
length At is
e~ *M(AAL) = At + ofAt), (3.8)

where o(At) here stands for terms which vanish faster than At as At goes to



40 Applications of hypergeometric and Poisson distributions

zero. We will have T, €(t, t + At] if there are no eventsin (s, s + t] and one event
in (s + t,s + t + At]. By independence, the probability of both of these is the
product of the probabilities of either occurring separately. Hence

Pr{T,e(t,t + At]} = e #[AAt + o(At)].
It follows that the density of T, is given by

fr@®=2"% 1> 0]

Alternatively, this result may be obtained by noting that
Pr{T, >t} =Pr{N(s,s+1)=0}=e" %

We find that not only is the waiting time to an event exponentially
distributed but also the following is true.

Theorem 3.4 The time interval between events is exponentially distributed with
mean 1/4.

Proof This is Exercise 8.

In fact it can be shown that if the distances between consecutive points
of occurrence are independent and identically exponentially distributed, then
the point process is a homogeneous Poisson point process. This statement
provides one basis for statistical tests for a Poisson process (Cox and Lewis,
1966).

The waiting time to the kth point of occurrence

Theorem 3.5 Let T, be the waiting time until the kth event after s, k=
1,2,.... Then T, has a gamma density with parameters k and 4.

Proof The kth point of occurrence will be the only one in (s +t, 5+t + At]
if and only if there are k—1 points in (s,s+t] and one point is in
(s+t,5+t+ Af]. It follows from (3.7) and (3.8) that

e~ M(A) T [AAt + o(A1)]

Pr{T,e(,t+At]} = D) . k=120
Hence the density of T, is
r
MADE~1g=H
ka(t) = (k)_ F" > 0 (3‘9)
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Figure 3.4 The densities of the waiting times for 1,2 and 4 events in a homogeneous
Poisson point process with A=1.

and the mean and variance of T, are given by

k k
E(Tk) = 1, Var(Tk) = 1—2

Note that this result can also be deduced from the fact that the sum of k > 1
independent exponentially distributed random variables, each with mean 1/4,
has a gamma density as in (3.9) (prove this by using Theorem2.4). Fur-
thermore, it can be shown that the waiting time to the kth event after an event
has a density given by (3.9).

The waiting times for k= 1,2 and 4 events have densities as depicted in
Fig. 3.4. Note that as k gets larger, the density approaches that of a normal
random variable (see Chapter 6, when we discuss the central limit theorem).

3.5 OCCURRENCE OF POISSON PROCESSES
IN NATURE

The following reasoning leads in a natural way to the Poisson point process.
Points, representing the times of occurrence of an event, are sprinkled
randomly on the interval [0, s] under the assumptions:

(i) the numbers of points in disjoint subintervals are independent;
(ii) the probability of finding a point in a very small subinterval is
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proportional to its length, whereas the probability of finding more than
one point is negligible.

It is convenient to divide [0, s] into » subintervals of equal length As = s/n.
Under the above assumptions the probability p that a given subinterval
contains a point is As/n where 4 is a positive constant. Hence the chance of k
occupied subintervals is

Pr {k pointsin [0,s]} = b(k; n, p)

=b(k;n,£).
n

Now as n— 00, is/n— 0 and we may invoke the Poisson approximation to the
binomial probabilities (see also Chapter 6):

— k
bl n, p) Hw:CXP( kr:p)(np) .

But np = n(As)/n = As. Hence in the limit as n— oo,

exp (— As)(As)*
k! ’

Pr {kpointsin [0,5s]} =

as required.

The above assumptions and limiting argument should help to make it
understandable why approximations to Poisson point processes arise in the
study of a broad range of natural random phenomena. The following examples
provide evidence for this claim.

Examples

(i) Radioactive decay

The times at which a collection of atomic nuclei emit, for example, alpha-
particles can be well approximated as a Poisson point process. Suppose there
are N observation periods of duration T, say. In Exercise 18 it is shown that
under the Poisson hypothesis, the expected value, n,, of the number, N,, of
observation periods containing k emissions is

_ Nexp(—n)*
nk - k' s
where 7 = AT is the expected number of emissions per observation period. For
an experimental data set, see Feller (1968, p. 160).

k=0,1,2,... (3.10)

(ii) Arrival times
The times of arrival of customers at stores, banks, etc., can often be
approximated by Poisson point processes. Similarly for the times at which
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phone calls are made, appliances are switched on, accidents in factories or in
traffic occur, etc. In queueing theory the Poisson assumption is usually made
(see for example Blake, 1979), partly because of empirical evidence and partly
because it leads to mathematical simplifications. In most of these situations the
rate may vary so that 4 = A(f). However, over short enough time periods, the
assumption that A is constant will often be valid.

(iii) Mutations

In cells changes in genetic (hereditary) material occur which are called
mutations. These may be spontaneous or induced by external agents. If
mutations occur in the reproductive cells (gametes) then the offspring inherits
the mutant genes. In humans the rate at which spontaneous mutations occur
per gene is about 4 per hundred thousand gametes (Strickberger, 1968). In the
common bacterium E. coli, a mutant variety is resistant to the drug
streptomycin. In one experiment, N = 150 petri dishes were plated with one
million bacteria each. It was found that 98 petri dishes had no resistant
colonies, 40 had one, 8 had two, 3 had three and 1 had four. The average
number 7 of mutants per million cells (bacteria) is therefore

40x1+8x2+3x3+1x4

= 150 = 0.46.

Under the Poisson hypothesis, the expected numbers n, of dishes containing k
mutants are as given in Table 3.2, as calculated using (3.10). The observed
values N, are also given and the agreement is reasonable. This can be
demonstrated with a x? test (see Chapter 1).

(iv) Voltage changes at nerve—muscle junction

The small voltage changes seen in a muscle cell attributable to spontaneous
activity in neighbouring nerve cells occur at times which are well described as a
Poisson point process. A further aspect of this will be elaborated on in
Section 3.9. Figure 3.5 shows an experimental histogram of waiting times

Table 3.2 Bacterial mutation data*

k m, N,(Obs.)
0 94.7 98
1 43.5 40
2 100 8
3 1.5 3
4 0.2 1

*From Strickberger (1968).
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Figure 3.5 A histogram of waiting times between spontaneously occurring small
voltage changes in a muscle cell due to activity in a neighbouring nerve cell. From Fatt
and Katz (1952).

between such events. According to the Poisson assumption, the waiting time
should have an exponential density which is seen to be a good approximation
to the observed data. This may also be rendered more precise with a 2
goodness of fit test. For further details see Van der Kloot et al. (1975).

3.6 POISSON POINT PROCESSES IN TWO DIMENSIONS

Instead of considering random points on the line we may consider random
points in the plane R?={(x,))| — 00 <x< 00, — 0 <y < 0}, or subsets
thereof.

Definition A point process /V is an homogeneous Poisson point process in
the plane with intensity 4 if:

(i) for any subset 4 of R2, the number of points N(A) occurring in A is a Poisson
random variable with parameter A|A4|, where |A| is the area of A4,

(i) for any collection of disjoint subsets of R?, 4,,4,,...,A,, the random
variables {V(4,),k =1,2,...,n} are mutually independent.

Note that the number of points in [0, x] x [0, y] is a Poisson random variable
with parameter Axy. Putting x = y = 1 we find that the number of points in the
unit square is Poisson with parameter 4. Hence A is the expected number of

points per unit area.

Application to ecological patterns

Ecologists are interested in the spatial distributions of plants and animals (see
for example MacArthur and Connell, 1966). Three of the situations of interest
are:
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Figure 3.6 Some representative spatial patterns of organisms: (a) random, (b) clumping
in groups, (c) preferred location, (d) regular.

(i) the organisms are distributed randomly;

(i) the organisms have preferred locations in the sense that they tend to occur
in groups (i.e. are clustered or clumped) or in some regions more
frequently than others;

(ili) the organisms are distributed in a regular fashion in the sense that the
distances between them and their nearest neighbours tend to be constant.

These situations are illustrated in Fig. 3.6. We note that clumping indicates
cooperation between organisms. The kind of spacing shown in Fig. 3.6(d)
indicates competition as the organisms tend to maintain a certain distance
between themselves and their neighbours.

An important reason for analysing the underlying pattern is that if it is
known, the total population may be estimated from a study of the numbersina
small region. This is of particular importance in the forest industry.

The hypothesis of randomness leads naturally, by the same kind of
argument as in Section 3.5, to a Poisson point process in the plane. Ecologists
refer to this as a Poisson forest. Under the assumption of a Poisson forest we
may derive the probability density function of the distance from one organism
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(c.g. tree) to its nearest neighbour. We may use this density to test the
hypothesis of randomness. We first note the following result.

Theorem 3.6 In a Poisson forest, the distance R, from an arbitrary fixed point
to the nearest event has the probability density

r

fr,r) =24zre” ™|, r>0. (3.11)

Proof We will have R, >r if and only if there are no events in the circle of
radius r with centre at the fixed point under consideration. Such a circle has
area 7r?, so from the definition of a Poisson point process in the plane, the
number of events inside the circle is a Poisson random variable with mean
Anr?, This gives

Pr{R,>r}=e" %"

We must then have
d — Anr?
ful) =gt e
which leads to (3.11) as required.

We may also prove that the distance from an event to its nearest neighbour
in a Poisson forest has the density given by (3.11). It is left as an exercise to
prove the following result.

Theorem 3.7 In a Poisson forest the distance R, to the kth nearest event has the
density

] 1. —anr? |
2aAr(Amr®) e 4
Lka(r)= ((k_l)' . >0, k=1,2,....

Estimating the number of trees in a forest

If one is going to estimate the number of trees in a forest, it must first be
ensured that the assumed probability model is valid. The obvious hypothesis
to begin with is that one is dealing with a Poisson process in the plane. A few
methods of testing this hypothesis and a method of estimating 4 are now
outlined. For some further references see Patil et al. (1971) and Heltshe and
Ritchey (1984). An actual data set is shown in Fig. 3.7.

Method 1 — Distance measurements

Under the assumption of a Poisson forest the point—nearest tree or tree—
nearest tree distance has the density fi, given in (3.11). The actual measure-
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Figure 3.7 Locations of trees in Lansing Woods. Smaller dots represent oaks, larger

dots represent hickories and maples. The data are analysed in Exercise 22. Reproduced
with permission from Clayton (1984).

ments of such distances may be collected into a histogram or empirical
distribution function. A goodness of fit test such as y* (see Chapter 1) or
Kolmogorov—-Smirnov (see for example Hoel, 1971; or Afifi and Azen, 1979)
can be carried out. Note that edge effects must be minimized since the density
of R, was obtained on the basis of an infinite forest.

Assuming a Poisson forest the parameter 2 may be estimated as follows. Let
{X,i=1,2,...,n} be a random sample for the random variable with the
density (3.11). Then it is shown in Exercise 21 that an unbiased estimator (see
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Exercise 6) of 1/4 is

An estimate of A is thus made and hence, if the total area A4 is known, the total
number of trees may be estimated as 1A4. For further details see Diggle (1975,
1983), Ripley (1981) and Upton and Fingleton (1985).

Method 2—Counting

Another method of testing the hypothesis of a Poisson forest is to subdivide
the area of interest into N equal smaller areas called cells. The numbers N, of
cells containing k plants can be compared using a y>-test with the expected
numbers under the Poisson assumption using (3.10), with 7 =the mean
number of plants per cell.

Extensions to three and four dimensions

Suppose objects are randomly distributed throughout a 3-dimensional region.
The above concepts may be extended by defining a Poisson point process in
R3, Here, if A is a subset of R?, the number of objects in A is a Poisson random
variable with parameter A| 4|, where 4 is the mean number of objects per unit
volume and |A| is the volume of A. Such a point process will be useful in
describing distributions of organisms in the ocean or the earth’s atmosphere,
distributions of certain rocks in the earth’s crust and of objects in space.
Similarly, a Poisson point process may be defined on subsets of R* with a view
to describing random events in space—time.

3.7 COMPOUND POISSON RANDOM VARIABLES

Let X,,k=1,2,... be independent identically distributed random variables
and let N be a non-negative integer-valued random variable, independent of
the X,. Then we may form the following sum:

SN=X1+X2+"'+XN, (3.12)

where the number of terms is determined by the value of N. Thus Sy is a
random sum of random variables: we take Sy to be zero if N=0. If Nis a
Poisson random variable, Sy is called a compound Poisson random variable.
The mean and variance of Sy are then as follows.

Theorem 3.8 Let E(X;)=p and Var(X,)=0c? |pg}<o0,0<co. If N is



