48  Applications of hypergeometric and Poisson distributions
Exercise 6) of 1/4 is

Ai=1y x2,

ni=1

An estimate of A is thus made and hence, if the total area A is known, the total
number of trees may be estimated as A4. For further details see Diggle (1975,
1983), Ripley (1981) and Upton and Fingleton (1985).

Method 2-Counting

Another method of testing the hypothesis of a Poisson forest is to subdivide
the area of interest into N equal smaller areas called cells. The numbers N, of
cells containing k plants can be compared using a x-test with the expected
numbers under the Poisson assumption using (3.10), with 7= the mean
number of plants per cell.

Extensions to three and four dimensions

Suppose objects are randomly distributed throughout a 3-dimensional region.
The above concepts may be extended by defining a Poisson point process in
R3, Here, if A is a subset of R?, the number of objects in A is a Poisson random
variable with parameter 1| 4|, where 1 is the mean number of objects per unit
volume and |4| is the volume of 4. Such a point process will be useful in
describing distributions of organisms in the ocean or the earth’s atmosphere,
distributions of certain rocks in the earth’s crust and of objects in space.
Similarly, a Poisson point process may be defined on subsets of R* with a view
to describing random events in space—time.

37 COMPOUND POISSON RANDOM VARIABLES

Let X, k=1,2,... be independent identically distributed random variables
and let N be a non-negative integer-valued random variable, independent of
the X,. Then we may form the following sum:

SN=X1+X2+"'+XN’ (312)

where the number of terms is determined by the value of N. Thus Sy is a
random sum of random variables: we take Sy to be zero if N=0.If N is a
Poisson random variable, Sy is called a compound Poisson random variable.
The mean and variance of Sy are then as follows.

Theorem 3.8 Let E(X,)=p and Var(X,)=o¢2, |p|<o,0<c0. If N is
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Poisson with parameter i, then S, defined by (3.12) has mean and variance

E(Sy)=4p
Var(Sy) = A2+ 6?).

Proof The law of total probability applied to expectations (see p. 8) gives
ESy)= Y ESyIN=FkPr{N=k}.
k=0

But conditioned on N =k, there are k terms in (3.12) so E(Sy|N =k) =kpu.
Thus

E(Sy) = k‘i pk Pr {N = k}

= pE(N)
= Au.

Similarly,

E(S2)= ’20 E(S2|N =k)Pr{N =k}

= 3 [Var(Sy|N =k) + EXSy|N =K1 Pr {N = k}
k=0

= Y (ko? + k*u?)Pr{N =k}
k=0
— 62E(N) + p2E(N?)
=024+ p?[Var(N) + EN)]
=02l + (A + A%).
The result follows since Var (Sy) = E(S3) — 4?42

Example The number of seeds (N) produced by a certain kind of plant has a
Poisson distribution with parameter 1. Each seed, independently of how many
there are, has probability p of forming into a developed plant. Find the mean
and variance of the number of developed plants (ignoring the parent).

Solution Let X, = 1 if the kth seed develops into a plant and let X; =0 if it
doesn’t. Then the X, are i.i.d. Bernoulli random variables with
Pr{X,=1}=p=1-Pr{X, =0}

and
E(X,)=p
Var(X,)=p(l —p).
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The number of developed plants is
SN=X1+X2+ "‘+XN

which is therefore a compound Poisson random variable. By Theorem 3.8,
with u = p and ¢ = p(1 — p) we find

E(Sy)=4p
Var (Sy) = Ap” + p(1 - p))
= Aip.

As might be suspected from these results, in this example Sy is itself a
Poisson random variable with parameter Ap. This can be readily shown using
generating functions — see Section 10.4.

38 THE DELTA FUNCTION

We will consider an interesting neurophysiological application of compound
Poisson random variables in the next section. Before doing so we find it
convenient to introduce the delta function. This was first employed in
quantum mechanics by the celebrated theoretical physicist P.A.M. Dirac, but
has since found application in many areas.

Let X, be a random variable which is uniformly distributed on (x, — &/2,
Xo + £/2). Then its distribution function is

0, X < X9 — &/2,

Fy(x)=Pr {X,<x}= é[x—~(x0—s/2)], |x — x| < &/2,

1, XZx,+¢2
=.=Hc(x_x0)-
§
[
H 1/e
€

X -e/2 X X +e/2 X ~€/2 X X +¢/2
g g o] 4] o 0
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The density of X, is

dFy (1/e,  |x—x|<&/2
Xym__ )05 0 :
J2 ) dx {0, otherwise.
= 5:(x - x())-

The functions H, and J, are sketched in Fig. 3.8.

As ¢—0, H{x— x,) approaches the unit step function, H(x — x,) and
8,(x — x) approaches what is called a delta function, d(x — x,). In the limit as
£¢—0, 5, becomes ‘infinitely large on an infinitesimally small interval’ and zero
everywhere else. We always have for all 6> 0,

j d(x —xg)dx=1.

il ¢}

We say that the limiting object d(x — x,) is a delta function or a unit mass
concentrated at x,,.

Substitution property

Let f be an arbitrary function which is continuous on (xq —&/2, xq + £/2).
Consider the integrals

I, = f 9~ x)dx = J " .

x0—¢&/2

When ¢ is very small,

1
I, 2 (x0) = f (o).

We thus obtain the substitution property of the delta function:
J- J(x)d(x — xo) dx = f(x,). (3.13)
=

Technically this relation is used to define the delta function in the theory of
generalized functions (see for example Griffel, 1985). With f(x)=1, (3.13)
becomes

j‘ O(x —xg)dx=1.

Furthermore, since d(x) =0 for x #0,

0, x < X,
1, X = Xq.

fx o(x' — xp)dx’ = H(x — xp) = {
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Thus we may informally regard &(x — x,) as the derivative of the unit step
function H(x — x,). Thus it may be viewed as the density of the constant x,,.

Probability density of discrete random variables

Let X be a discrete random variable with Pr(X =1)=1-Pr(X =0)=p.
Then the probability density of X is written

fx(x)=(1 = p)é(x) + pd(x — 1).

This gives the correct distribution function for X because

Fx(®)=Pr(X <x)= f " fx)dx = (1 pH() + pH(x — 1)

0, x <0,
=<1-p, 0<x<1,
1, xz=1,

as is sketched in Fig. 3.9.
Similarly, the probability density of a Poisson random variable with
parameter A is given by

© A’k
Sr(x)= e"‘k;oﬁé(x — k).

39 AN APPLICATION IN NEUROBIOLOGY

In Section 3.5 we mentioned the small voltage changes which occur sponta-
neously at nerve—muscle junctions. Their arrival times were found to be well
described by a Poisson point process in time. Here we are concerned with their
magnitudes. Figure 3.10 depicts the anatomical arrangement at the nerve—
muscle junction. Each cross represents a potentially active site.

The small spontaneous voltage changes have amplitudes whose histogram is
fitted to a normal density —see Fig. 3.11. When a nerve impulse, having
travelled out from the spinal cord, enters the junction it elicits a much bigger
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Figure 3.10 The arrangement at a nerve-muscle junction.
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Figure 3.11 Histogram of small spontaneous voltage changes and fitted normal
density. From Martin (1977). Figures 3.11-3.13 reproduced with permission of the
American Physiological Society and the author.
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response whose amplitude we will call V. It was hypothesized that the large
response was composed of many unit responses, the latter corresponding to
the spontaneous activity.

We assume that the unit responses are X, X ,, . ..and that these are normal
with mean y and variance o2, A large response consists of a random number N
of the unit responses. If N =0, there is no response at all. Thus

V=X + X+ +Xy

which is a random sum of random variables. A natural choice for N is a
binomial random variable with parameters n and p where n is the number of
potentially active sites and p is the probability that any site is activated.
However, the assumption is usually made that N is Poisson. This is based on
the Poisson approximation to the binomial and the fact that a Poisson
distribution is characterized by a single parameter. Hence V is a compound
Poisson random variable. The probability density of ¥V is then found as
follows:

Pr{Ve(,v+dv)} = Z Pr{Ve(,v+dv)|N=k}Pr{N =k}
k=0 :
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Figure 3.12 Decomposition of the compound Poisson distribution. The curve marked
I corresponds to py, the curve marked II to p,, etc., in (3.14).
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Pr{Ve(v,v+dv)|N =0}
e ,1 k

Pr{Ve(v,v+ dv)|N =k}

_+-

1 — (0 — kp)?
[,% L /@}I;"p( ) o
[ ~3§(0) + k; k(v)}dv,

where &(v) is a delta function concentrated at the origin. Hence the required
density is

fo) =60+ 3 o) | (.14

The terms in the expansion of the density of V are shown in Fig. 3.12. The
density of V is shown in Fig. 3.13 along with the empirical distribution.
Excellent agreement is found between theory and experiment, providing a
validation of the ‘quantum hypothesis’. For further details see Martin (1977).
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Figure 3.13 Histogram of responses. The curve is the density for the compound
Poisson distribution, the column at 0 corresponding to the delta function in (3.14).



