1
Simple random walks

71 RANDOM PROCESSES-DEFINITIONS AND
CLASSIFICATIONS

Definition of random process

Physically, the term random (or siochastic) process refers to any quantity that
evolves randomly in time or space. It is usually a dynamic object of some kind
which varies in an unpredictable fashion. This situation is to be contrasted
with that in classical mechanics whereby objects remain on fixed paths which
may be predicted exactly from certain basic principles.

Mathematically, a random process is defined as a collection of random
variables. The various members of the family are distinguished by different
values of a parameter, a, say. The entire set of values of o, which we shall denote
by A, is called an index set or parameter set. A random process is then a
collection such as

{X,aeA}

of random variables. The index set A may be discrete (finite or countably
infinite) or continuous. The space in which the values of the random variables
{X,} lie is called the state space.

Usually there is some connection which unites, in some sense, the individual
members of the process. Suppose a coin is tossed 3 times. Let X, with possible
values 0 and 1, be the number of heads on the kth toss. Then the collection
{X, X,, X3} fits our definition of random process but as such is of no more
interest than its individual members since each of these random variables is
independent of the others. If however we introduce Y, =X, Y,=X, + X,
Y;=X,+ X, + X3, so that Y, records the number of heads up to and
including the kth toss, then the collection {Y,,ke{1,2,3} } is a random process
which fits in with the physical concept outlined earlier. In this example the
index set is A = {1,2,3} (we have used k rather than « for the index) and the
state space is the set {0,1,2,3}.

The following two physical examples illustrate some of the possibilities for
index sets and state spaces.
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Examples

(i) Discrete time parameter

Let X, be the amount of rainfall on day k with k=0,1,2,.... The collection of
random variables X = {X,, k=0,1,2,... } isarandom process in discrete time.
Since the amount of rainfall can be any non-negative number, the X, have a
continuous range. Hence X is said to have a continuous state space.

(ii ) Continuous time parameter

Let X{¢) be the number of vehicles on a certain roadway at time ¢ where i 2 01is
measured relative to some reference time. Then the collection of random
variables X = {X(t),t > 0} is a random process in continuous time. Here the
state space is discrete since the number of vehicles is a member of the discrete
set {0,1,2,..., N} where N is the maximum number of vehicles that may be on
the roadway.

Sample paths of a random process

The sequences of possible values of the family of random variables constituting
a random process, taken in increasing order of time, say, are called sample
paths (or trajectories or realizations). The various sample paths correspond to
‘elementary outcomes’ in the case of observations on a single random variable.
It is often convenient to draw graphs of these and examples are shown in
Fig. 7.1 for the cases:

(a) Discrete time—discrete state space, e.g., the number of deaths in a city due
to automobile accidents on day k;

(b) Discrete time—continuous state space, e.g., the rainfall on day k;

(c) Continuous time—discrete state space, e.g., the number of vehicles on the
roadway at time f;

(d) Continuous time—continuous state space, €.g., the temperature at a given
location at time t.

Probabilistic description of random processes
Any random variable, X, may be characterized by its distribution function
Fx)=Pr{X<x}, —o0o<x<®

A discrete-parameter random process {X;,k=0,1,2,..., n} may be
characterized by the joint distribution function of all the random variables
involved,

F(xo,xl,...,x,,)= Pr{Xo <X0,X1 < xl,...,X" Sx,,},
X, €(— 00, oC), k=12,...,n,
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Figure 7.1 Sketches of representative sample paths for the various kinds of random
processes.

and by the joint distributions of all distinct subsets of { X}. Similar, but more
complicated descriptions apply to continuous time random processes. The
probabilistic structure of some processes, however, enables them to be
characterized much more simply. One important such class of processes is
called Markov processes.

Markev processes

Definition Let X = {X,,k=0,1,2,...} be a random process with a discrete
index set and a discrete state space S = {5, 5,,53,... }. I

Pr{X,=s.|X,-1=9_ X 2=5_, s Xi=5,X = §p.t

=Pr{X, =5, |X,.,=¢ (7.1)

Ry

for any n > 1 and any collectionof s, €S, j=0,1,...n, then Xis called a Markov
process.
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Equation (7.1) states that the values of X at all times prior to n — 1 have no
effect whatsoever on the conditional probability distribution of X, given X, _ ;.
Thus a Markov process has memory of its past values, but only to a limited
extent.

The collection of quantities

PI’ {Xn = Sk”[X"_l = Skn—l}

for various n,s, and s, , is called the set of one-time-step transition
probabilities. It will be seen later (Section 8.4) that these provide a complete
description of the Markov process, for with them the joint distribution
function of (X,, X, 1,-.., X1, X,), or any subset thereof, can be found for any
n. Furthermore, one only has to know the initial value of the process (in
conjunction with its transition probabilities) to determine the probabilities that
it will take on its various possible values at all future times. This situation may
be compared with initial-value problems in differential equations, except that
here probabilities are determined by the initial conditions.

All the random processes we will study in the remainder of this book are
Markov processes. In the present chapter we study simple random walks
which are Markov processes in discrete time and with a discrete state space.
Such processes are examples of Markov chains which will be discussed more
generally in the next chapter.

One note concerning terminology. We often talk of the value of a process at
time ¢, say, which really refers to the value of a single random variable (X(t)),
even though a process is a collection several random variables.

72 UNRESTRICTED SIMPLE RANDOM WALK

Suppose a particle is initially at the point x=0 on the x-axis. At each
subsequent time unit it moves a unit distance to the right, with probability p, or
a unit distance to the left, with probability g, where p+¢g=1.

At time unit # let the position of the particle be X,. The above assumptions

yield
X,=0, with probability one,
and in general,
X,=X,..+Z,, n=1L12,..,
where the Z, are identically distributed with
Pr{Z,=+1}=p
Pr{Z,=—-1}=gq.
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It is further assumed that the steps taken by the particle are mutually
independent random variables.

Definition. The collection of random variables X = {X;, X, X,,...} iscalled a
simple random walk in one dimension. It is ‘simple’ because the steps take only
the values + 1, in distinction to cases where, for example, the Z, are continuous
random variables.

The simple random walk is a random process indexed by a discrete time
parameter (n=0,1,2,...) and has a discrete state space because its possible
values are {0, + 1, + 2,...}. Furthermore, because there are no bounds on the
possible values of X, the random walk is said to be unrestricted.

Sample paths
Two possible beginnings of sequences of values of X are

{0,+1,+2,+1,0,—1,0,+1,+2,+3,...}
{0,—1,0,—1,-2,—3,—4,—3,—4,-5,...}

The corresponding sample paths are sketched in Fig. 7.2.
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Figure 7.2 Two possible sample paths of the simple random walk.
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Markov property
A simple random walk is clearly a Markov process. For example,
Pr{X,=2|X;=3X,=2X,=1,X,=0}
=Pr{X,=2|X;=3}=Pr{Z,=+1}=4.

That is, the probability is g that X, has the value 2 given that X;=3,
regardless of the values of the process at epochs 0, 1, 2.
The one-time-step transition probabilities are

P, fk=j+1
pjk=Pf{Xn=k[X,,_1=j}= q, ifk:j—l
0, otherwise

and in this case these do not depend on n.

Mean and variance

We first observe that
Xl =X°+Zx
X2=X1+ZZ=X0+Zl+ZZ
X,=Xo+Z,+Z,+---+ 2,

Then, because the Z, are identically distributed and independent random
variables and X, =0 with probability one,

E(Xn)=E( 3, Zk)=nE(Zl)
k=1

and
Var(X,,)=Var( Y Zk)=nVar(Zl).
k=1

Now,

EZ)=1p+(-1)g=p—q
and

EZ})=1p+1g=p+q=1
Thus

Var(Z,)=E(Z}) - E*Z,)
=1-(p—9q’
=1-(p*+q*—2pq)
=1—-(p*+4>+2p9) +4pq
=4pq,
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since p*+q*+2pg=(p+¢q)*=1. Hence we arrive at the following ex-
pressions for the mean and variance of the process at epoch n:

EX,)=nlp—q) (7.2)
Var(X,) = 4npq (7.3)

We see that the mean and variance grow linearly with time.

The probability distribution of X,

Let us derive an expression for the probability distribution of the random
variable X,, the value of the process (or x-coordinate of the particle) at time
n = 1. That is, we seek

pk,n)=Pr{X, =k},
where k is an integer.
We first note that p(k, n) = 0if n < | k| because the process cannot get to level
k in less than | k| steps. Henceforth, therefore, n > |k|.

Of the n steps let the number of magnitude + 1 be N, and the number of
magnitude — 1 be N,;, where N, and N, are random variables. We must have

X,=N; =N,
and
n=N}+N,.
Adding these two equations to eliminate N, yields
N} =in+X,). (74)

Thus X, =k if and only if N,/ = }{(n + k). We note that N, is a binomial
random variable with parameters n and p. Also, since from(7.4),2N,f =n+ X,
is necessarily even, X, must be even if n is even and X, must be odd if n is odd.
Thus we arrive at

e n k+n)2 n—k)/2 |,

n>|k|, k and n either both even or both odd.

For example, the probability that the particle is at k = — 2 after n =4 steps is

4
p(—2,4)= ( { )pq3 =4pg’>. (7.5)

This will be verified graphically in Exercise 3.
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Approximate probability distribution
If X, =0, then
X,= i Z,
k=1
where the Z, are ii.d. random variables with finite means and variances.

Hence, by the central limit theorem (Section 6.4),

Xn_E(Xn) d
——G{—XT—»N(O, 1)

as n— 0. Since E(X,) and o(X,) are known from (7.2) and (7.3), we have
X —nlp—
/4npq

Thus for example,

Pr{n(p — q) — 1.96./4npq < X, < n(p — q) + 1.96 . /4npq } ~0.95.
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Figure 7.3 Mean of the random walk versus n for p=0.5 and p=0.8 and normal
density approximations for the probability distributions of the process at epochs n =50
and n=100.
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After n = 10000 steps with p = 0.6, E(X,) = 2000 an

Pr {1808 < X000 <2192} ~0.95,
whereas when p = 0.5 the mean is 0 and

Figure 7.3 shows the growth of the mean with increasing n and the
approximating normal densities at n = 50 and n = 100 for various p.

7.3 RANDOM WALK WITH ABSORBING STATES

The paths of the process considered in the previous section increase or decrease
at random, indefinitely. In many important applications this is not the case as
particular values have special significance. This is illustrated in the following
classical example.

A simple gambling game

Let two gamblers, A and B, initially have $a and $b, respectively, where a and b
are positive integers. Suppose that at each round of their game, player 4 wins
$1 from B with probability p and loses $1 to B with probability g = 1 — p. The
total capital of the two players at all times is

c=a+b.

Let X, be player A’s capital at round n where n =0, 1,2,... and X, = a. Let
Z, be the amount A wins on trial n. The Z, are assumed to be independent.
It is clear that as long as both players have money left,

X,=X,_,+Z, n=12...,

where the Z, are i.i.d. as in the previous section. Thus {X,,n=0,1,2,...} isa
simple random walk but there are now some restrictions or boundary
conditions on the values it takes.

Absorbing states

Let us assume that 4 and B play until one of them has no money left; i.e., has
‘gone broke’. This may occur in two ways. A’s capital may reach zero or A4’s
capital may reach ¢, in which case B has gone broke. The process
X ={Xp,X,,X,,...} is thus restricted to the set of integers {0,1,2,...,c} and
it terminates when either the value 0 or ¢ is attained. The values 0 and ¢ are
called absorbing states, or we say there are absorbing barriers at 0 and c.
Figure 7.4 shows plots of A’s capital X, versus trial number for two possible



