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After n = 10000 steps with p = 0.6, E(X,) = 2000 an

Pr {1808 < X400 < 2192} 095,

whereas when p = 0.5 the mean is 0 and
Pr{—196 < X000 < 196} ~0.95.

Figure 7.3 shows the growth of the mean with increasing n and the
approximating normal densities at n =50 and n = 100 for various p.

7.3 RANDOM WALK WITH ABSORBING STATES

The paths of the process considered in the previous section increase or decrease
at random, indefinitely. In many important applications this is not the case as
particular values have special significance. This is illustrated in the following
classical example.

A simple gambling game

Let two gamblers, A and B, initially have $a and $b, respectively, whereaand b
are positive integers. Suppose that at each round of their game, player 4 wins
$1 from B with probability p and loses $1 to B with probability g =1 — p. The
total capital of the two players at all times is

c=a+b.

Let X, be player A4’s capital at round n where n=0,1,2,... and X, = a. Let
Z, be the amount A wins on trial n. The Z, are assumed to be independent.
It is clear that as long as both players have money left,

X,=X,.,+Z, n=12..,

where the Z, are i.i.d. as in the previous section. Thus {X,,n=0,1,2,...} is a
simple random walk but there are now some restrictions or boundary
conditions on the values it takes.

Absorbing states

Let us assume that 4 and B play until one of them has no money left; i.e., has
‘gone broke’. This may occur in two ways. A’s capital may reach zero or A’s
capital may reach ¢, in which case B has gone broke. The process
X ={X,, X, X,,...} is thus restricted to the set of integers {0, 1,2,...,c} and
it terminates when either the value O or c is attained. The values 0 and ¢ are
called absorbing states, or we say there are absorbing barriers at 0 and c.
Figure 7.4 shows plots of A’s capital X, versus trial number for two possible
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Figure 7.4 Two sample paths of a simple random walk with absorbing barriers at 0 and
c. The upper path results in absorption at ¢ (corresponding to player A winning all the
money) and the lower one in absorption at O (player 4 broke).

games. One of these sample paths leads to absorption of X at 0 and the other to
absorption at c.

74 THE PROBABILITIES OF ABSORPTION AT 0

Let P,a=0,1,2,...,c denote the probabilities that player 4 goes broke when
his initial capital is $a. Equivalently P, is the probability that X is absorbed at
0 when X, = a. The calculation of P, is referred to as a gambler’s ruin problem.
We will obtain a difference equation for P,.

First, however, we observe that the following boundary conditions must

apply:

‘_P0=1
| P,=0

since if a=0 the probability of absorption at 0 is one whereas if a=c,
absorption at ¢ has already occurred and absorption at 0 is impossible.

Now, when a is not equal to either 0 or ¢, all games can be divided into two
mutually exclusive categories:
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(i) A wins the first round,;
(ii) A loses the first round.

Thus the event {4 goes broke from a} is the union of two mutually exclusive
events:

{A goes broke from a} =
{A wins the first round and goes broke from a + 1}
w {4 loses the first round and goes broke from a — 1}. (7.6)

Also, since going broke after winning the first round and winning the first
round are independent,

Pr {4 wins the first round and goes broke from a + 1}
= Pr{A wins the first round} Pr {4 goes broke from a + 1}
= pPa+ 1 (77)

Similarly,
Pr {4 loses the first round and goes broke from a — 1}
= an -1 (78)

Since the probability of the union of two mutually exclusive events is the
sum of their individual probabilities, we obtain from (7.6)-(7.8), the key
relation

| P,=pP,. +qP,_,|, a=12,...,c—1. (1.9)
L

This is a difference equation for P, which we will solve subject to the above
boundary conditions.

Solution of the difference equation (7.9)

There are three main steps in solving (7.9).

(1) The first step is to rearrange the equation
Since p + ¢ =1, we have

(P+q)Pa=pPa+1 +an—1s

p(Pa+l _Pa)=q(Pa_Pa—1)°
Dividing by p and letting

or

=
4

gives
Pa+1_Pa=r(Pa_Pa—1)-
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(ii) The second step is to find P,

To do this we write out the system of equations and utilize the boundary
condition P, =1:

a=1 : P,—P; =rP,—Py) =nP,—1)
a=2 . P3—P2 =r(P2—P1) =r2(P1—1)

: 5 : : (7.10)
a=c—2 Pc—l'—Pc—z=r(Pc—2_Pc—3)=rc_2(P1—1)
a=c—1 Pc_Pc—l =r(1:,(:—1_Pc--2)=rc—1(1:’1'_1)J

Adding all these and cancelling gives
P.—P,=—P, =P, —1)r+r*+--+r", (7.11)

where we have used the fact that P.=0.

Special case: p=q=% fp=g=%4thenr=1sor+r*+ ... +r '=c—1L
Hence
_P1=(P1_1)(C—1).

Solving this gives

P1=1—1 . r=1. (7.12)
. e

General case: p # q Equation (7.11) can be rearranged to give
P,— DA +r+r2+ - +rr"H+1=0
SO

1
1+r+r2+-+r

P1=1"'

For r # 1 we utilize the following formula for the sum of a finite number of
terms of a geometric series:

1—r¢

1+r+r2+---+r"‘1=1 = (7.13)
Hence, after a little algebra,
I AL R (7.14)
1-r

Equations (7.12) and (7.14) give the probabilities that the random walk is



Probabilities of absorption at 0 135

absorbed at zero when X, = 1, or the chances that player A goes broke when
starting with one unit of capital.

(ili) The third and final step is to solve for P,, a # 1.
From the system of equations (7.10) we get

P2=P1+7(P1—1)
P3=P2+72(P1_1) =P1+(P1_1)(7'+7'2)

i')a=P‘a—1"'ra—l(Pl_1)=P1.+(P1_1)(7"+'7'2'+‘"“I-f'aul).

Adding and subtracting one gives
P,=P,—11+r+r’+--+r H+1. (7.15)

Special case: p=q=% When r=1 we have 1 +r+r’+...4+7r°" 1 =g, so

using (7.12) gives
Pa=1—g . p=4q. (7.16)

General case: p # q From (7.14) we find

r—1

P1_1=1_rc.

Substituting this in (7.15) and utilizing (7.13) for the sum of the geometric

series,
r—1 1—-r°
P"=(1—r‘)(1—r)+1’

which rearranges to

Thus, in terms of p and g we finally obtain the following resuits.

Theorem 7.1 The probability that the random walk is absorbed at 0 when it
starts at X, = a, (or the chances that player 4 goes broke from a) is

P (¢/p)* — (q/p)

= 1_@lpy I P#q. (7.17)




Table 7.1 Values of P, for various values of p.

a p=025 p=04 p=05
0 1 1 1
1 0.99997 0.99118 0.9
2 0.99986 0.97794 0.8
3 0.99956 0.95809 0.7
4 0.99865 0.92831 0.6
5 0.99590 0.88364 0.5
6 0.98767 0.81663 0.4
7 0.96298 0.71612 0.3
8 0.88890 0.56536 0.2
9 0.66667 0.33922 0.1

10 0 0 0

1.0
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Figure 7.5 The probabilities P, that player A goes broke. The total capital of both
players is 10, a is the initial capital of A4, and p = chance that A wins each round.
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When p=q=1%,

Some numerical values

Table 7.1 lists values of P, for c=10, a=0,1,...,10 for the three values
p=0.25,p=0.4 and p = 0.5. The values of P, are plotted against a in Fig. 7.5.
Also shown are curves for p=0.75 and p = 0.6 which are obtained from the
relation (see Exercise 8)

Pa(p)= 1 _Pc—a(l '—p)

In the case shown where p = 0.25, the chances are close to one that X will be
absorbed at 0 (4 will go broke) unless X is 8 or more. Clearly the chances that
A does not go broke are promoted by:

(i) a large p value, ie. a high probability of winning each round;
(ii) a large value of X, i.e. a large share of the initial capital.

7.5 ABSORPTION AT ¢c> 0

We have just considered the random walk {X,,n=0,1,2,...} where X, was
player A’s fortune at epoch n. Let Y, be player B’s fortune at epoch n. Then {Y,,
n=0,1,2,...} is a random walk with probability q of a step up and p of a step
down at each time unit. Also, Y, =c —a and if Y is absorbed at O then X is
absorbed at c.

The quantity

Q,=Pr{X is absorbed at ¢ when X, =a},

can therefore be obtained from the formulas for P, by replacing a by ¢ — a and
interchanging p and g.

Special case: p=q =% In this case P,=1—a/c so Q,=1—(c — a)/c. Hence

4]
General case: p # q From (7.17) we obtain

0,= (p/q)f"* — (p/qf
R S
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Multiplying the numerator and denominator by (g/p)° and rearranging gives

-Gy
[—(a/pr } p7a

[ P,+0,=1] (7.18)

Thus absorption at one or the other of the absorbing states is a certain event.

That the probabilities of absorption at 0 and at ¢ add to unity is not obvious.
One can imagine that a game might last forever, with A winning one round, B
winning the next, A the next, and so on. Equation (7.18) tells us that the
probability associated with such never-ending sample paths is zero. Hence
sooner or later the random walk is absorbed, or in the gambling context, one of
the players goes broke.

Qa

In all cases we find

7.6 THE CASE c =

If a, which is player A’s initial capital, is kept finite and we let b become infinite,
then player A is gambling against an opponent with infinite capital. Then,
since ¢ = a + b, ¢ becomes infinite. The chances that player A goes broke are
obtained by taking the limit ¢ — oo in expressions (7.16) and (7.17) for P,,. There
are three cases to consider.

B p>gq
Then player A has the advantage and since g/p <1,

.o (a/p) —(g/p)
chfl P“_chf?o 1 —(g/p¥

which is less than one.

= (a/p’,

(i) p=4
Then the game is ‘fair’ and

lim P, = lim 1—2=1.

c= o c— 0 (4
(iii) p<q
Here player A is disadvantaged and
: . (a/p)’" —(a/pYf
lim P,= lim ——————=
= e~ 1—1(q/pf

since q/p > 1.
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Note that even when A4 and B have equal chances to win each round, player
A goes broke for sure when player B has infinite initial capital. In casinos the
situation is approximately that of a gambler playing someone with infinite
capital, and, to make matters worse p < g so the gambler goes broke with
probability one if he keeps on playing. Casino owners are not usually referred
to as gamblers!

77 HOW LONG WILL ABSORPTION TAKE?

In Section 7.5 we saw that the random walk X on a finite interval is certain to
be absorbed at 0 or c. We now ask how long this will take.
Define the random variable

T, = time to absorption of X when X, =a, a=0,1,2,...,c

The probability distribution of T, can be found exactly (see for example Feller,
1968, Chapter 14) but we will find only the expected value of T,

D, = E(Ty).

Clearly, if a=0 or a=c, then absorption is immediate so we have the

boundary conditions
Dy=0 (7.19)
D.,=0 '1 (7.20)
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Figure 7.6 Paths leading to absorption after k steps.
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We will derive a difference equation for D,. Define
P(a,k)=Pr{T,=k}, k=1,2,...

which is the probability that absorption takes k time units when the process
begins at a. Considering the possible results of the first round as before (see the
sketch in Fig. 7.6), we find

P(a,k)y=pP(a+ 1,k— 1)+ qP(a— 1,k —1).
Multiplying by k and summing over k gives
E(T))= ) kP(a,k)=p ) kPla+1,k—1)+q ) kP(a—1,k—1).
k=1 k=1 k=1
Putting j = k — 1 this may be rewritten

D,=p (J+1)P(a+11)+qZ(J+1)P(a—11)

||M3

.

P(a+1’.’)+q Z]P(a"'ls.])

LN

I|
IIMg

+p Z Pla+1,j)+gq Z P(a — 1,j).
j=o i=o
But we have seen that absorption is certain, so

Y Pla+1,j)=) Pla—1,j)=1.
i=0 =0

Hence
D,=pD,yy+qD,-1+p+4q

Table 7.2 Values of D, from (7.22) and (7.23) with

c=10

a p=0.25 r=04 p=0.5
0 0 0 0
1 1.999 4.559 9
2 3.997 8.897 16
3 5.991 12.904 21
4 7.973 16.415 24
5 9918 19.182 25
6 11.753 20.832 24
7 13.260 20.806 21
8 13.778 18.268 16
9 11.334 11.961 9

10 0 0 0
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or, finally,

| D,=pD,y;+qD,_y+1, a=12...,c—1L (7.21)

This is the desired difference equation for D,, which can be written down
without the preceding steps (see Exercise 11).

The solution of (7.21) may be found in the same way that we solved the
difference equation for P,. In Exercise 12 it is found that the solution satisfying
the boundary conditions (7.19), (7.20) is

E=—a(c—aﬂ, r=4q, (1.22)
T (1—a@pr))

D,=——a—cq- : :
\[ . q_p(a c{l_(m}l, p#q (7.23)

Numerical values

Table 7.2 lists calculated expected times to absorption for various values of a
when ¢ = 10 and for p = 0.25, p = 0.4 and p =0.5. These values are plotted as
functions of a in Fig. 7.7.
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Figure 7.7 The expected times to absorption, D,, of the simple random walk starting at
a when ¢ = 10 for various p.






