C-eodesicsinhyperswtaceslM.gr) EUR " ; < , > ) hype surface Def-6.tt A (smooth) eure c : I→ M , IEIR internet , is Called a geodesic of IM , g) , if Htc I the be cetera Tien c " lt) ( token as a are in IR " " ) is orthogonal to Teufel E Tat)R " ? IR " 1 . • It IM - IR" , g) = ( IR " ? < , > ) , tue geoebics one tue affine Lines in IR " : at ) =/;) + t (II) c- IR " ( CH ) = and c " Htt IR " ⇐ sei " Lt) htt . In vori aus way s geodesics in ( Mg ) one one Logins of office Lines in LIR" . g) : • c " lt) t Tauft neues that dloauring acceleration I only nennen r to Keeps the Curve c in M . Those one the pathes parties in M to ke when they one in free toll ( no force is octiug on it ) . . c. " lt) t Ta) c " lt) < e " HI , wldt))>wldt) - = O w here w is a 6cal mit warnend neaorfiehd . Since c is a Curve in M , < alt) , wldt )) > =D and different . in t yields : < < " lt) , wldt) )> = < eilt) .IT#ckt) > = < alt ) , ↳ Hh = Elekt) , < ' lt)) . C : I → M is o geod . ⇐ C is a Solution of the secand oder ODE ¥) c. " Lt ) t Elekt) , eilt))wldt) ) - O . By Viewing Vos a fd . de find au au geusubselöf 11241 (*) is 2nd oder ODE an gar Inbset of IR "- 1 . Theory of ODE 's that for × c- M , % C- IM 7 loudly a Unique Solution c : I - IR" I of G) wir ( lo) = x , c ' ( O ) = 5 × ( I Novel conbiniug O ) . It is not had to see that dt ) EM htt . Heule , fer eng × EM , ↳ ETXM 7 a unique maximal geodesic C : I → M s . t.ch/--xeudc4d--E . • Relative ho D : YET ( TM ) , c : IT M a- Curve . Then !# fett) ) makes Sense , smce Pszlx) just - ( ldepaud> an Sk)) Moreau , c ' (t ) . q = ¥2 (dt) ) It follow , that e) (dt ) ) just demand> • 2£;If if is n wecker Jidd dang c ( ie . R : I - TM Camp Den BR is defiuedaudg.in KNEIF ) . KK sank weder find day c . (Kg) Lt) =L! Lt)) In particulier , we Lenny form ¥ ' . Since c ! c ' = c " ( by ueusrudia ) , tue Gauß eq . Impuls LHS of H) = % ' G-eodesic eigneten ↳ I can he wr.hn es % ' =D In partikeln , geodes , es > one iutriusic . S " EIR " " (5. groß EUR41,9 . > ) . dt ) Eeodesic eynatten : Tuff " = gut)t ( " lt) + ICH) , < ' lt ) ) dt ) = ( " lt ) - Eckt>µ = 0 ( i ) e geod . ⇐ < " lt ) = < ( " ( t ) , dt )> dt) . II: ÷:* -e. . c : tu, { × it ? - o IEEE t.EE/iEitsxF0 . ( r.DHrxtstf.IT, - ( lt) = cosllkxllt ) x t Sint " ? " t ) 1¥, ← ( ' It ) = Hdl smllkxllt ) x t Null Cos (Kh t )"¥" ( " lt) = lkxlicosllkxllt) × Nett sinkst) , , = MIT dt )- . m < c. " Lt ) , dt) ) = - 113×42 (Wilhelm )4×3 tsicilk.at)- Ein:* ) = - 14112 \= 1 =) Great Circles one gead . und all gead. are great Circles,by Uniqueness . 6. 3 Riemann im mfds (Mi g) Riemann im mhd m) 7 ! Torsion free - an M teed is uaysotide wir g ( Levi - Civita com . af IM . g) ) . n ) lurvahul of LM . g) = Curve of P ni T de hermine, o distihgnidued dass afareb) ( geodesics of Tor ( mg )) ; Def ' - O . - 6.3.lt/tffiwconnectiSupposeMisun-dim.mhdDef6.18-An affine connection on M is a linear connection on the long out bundle TM-1M , that is n IR- bi linear cuop D : TITM) x TITM ) → TLTM ) s.hr . ④ µ = f- % V-s.ge TLTM) ⑥ ! = C. f)qtf By . V-fc-caae.IR) . (cf . propoties ① and ② of Pop . 6.13 ) . Rein For RE THMI , ⑥ meins ted Tz is a I! ) - teuer . Wenn we can also sey that on office Connection is an IR- their map : TLTM) → TLTMQTM) Solis tyug ⑥ . 1 am (sm Be ) . An affine nenne die an M is a device that allows ho differentielle neuer fields in direction of never fields |and Volland ho holte a. at the acceleration of a done. ReeuorK_r.Lz@iuudauobgueefdirediadevN.sSaxe und teuerich in S . Er M = IR " ht . . . xu ) s = Es : ¥. iz - Eni! uf . • IR " . By K ) : = Eirik) #k) f- s - ZH) Delius affine connection , ideal the standard fld kenne die an IR " . In particulier , 0%4 = 0 . eguds also tue Levi Civita nannte ef URI gen ) C- Ynys, >) . En Levi - Civita Connection of hynerswt.ae we dehmel µ preview Sectieh ( see Prep . 6. B) . Any men : total oder .to an affine connection (we Sow that any mhd eduis wa n Rein . mehr:( good will see 9 deherwiuesbdish.ngu.net oftime Connection) , which the p Lies it oder its many ( since oddeny any K)- heuser to a Connection o) egoiu an efhiue kenne den) . Properties o ) D im ply : U EM open Sunset . Then 9) u just derart an Stu end Klo . In lo ad mordendes :L U, n ) : 4h ETC TM ) , SIE ES ' ¥; Ei :-c:*. . " ÄE „ lonnectien coefficieuls of O w.r.to ( Ku) " ( or Christoffel syubds of → ) - Re) ! = !! = Eiji = = ! = .EE?oEt--:iioEE-.:.iiiriiEr. . - P dRenner For a wort ( au ) u kenne Äu an U i T! T ( Tv) x TLTU) → TLTU) is gun by rund :< ÷.ie ¥. . !ü¥(Be) lo {sind ! t Tulsa) . an M ! . Suppose c : I → M Curve and RE ACM ) , than the the Loud for nenne Shows that (%) (dt) C- Tat)M just demand, on the aeshictieu of y to lange(c) ( c ' lt) zb (dt) ) = ¥25 (dt)) . Deuce , if z is anecken b.dat day c ( re . q → TM Egg we way dehne (G)H) : = !5) ( cm) " " 4k¥37 ) . Whee Ü is a vector on a neigh.ge LI) C- Ms. t . ÜKLIFRH). Then % , 4 is a well def . weder tided day c (iudep . of the extensiver) . Then the del of never Lied , doug c : I - he is a we our space and a module der C- tot . fit. lew.mn?19- ( M , D) mtd . wite affine connection , c : It M is o O Curve . ① Then the induced heop ! freu vl . day a to vf . day a is IR linear adf.fr - f ' ztf ! 2 - ② If c : IT M ↳s wehe es in a not (U , n ) and z is n neuer held day c , team (4) lt ) = ÄH) ' lt) #(dt ) ) t TYEYH.gl#ldtD = ÄH) ' lt ) # ( dt) ) t " ¥4 ) ' lt ) 254) Fühlt)) GeldD) when ylt) = .IE?iH)f-u..lcltI) ( yi : IHR G- Kis ) und ci = ni . c : In IR ¢' Id ) . Prof. IR limeuihg hellen , free IR hin ? of D . Local werdende formula fellows been Local Word . fanden oft and who product rule fellows eos.by Ken deere . Def.6.20-LM.ir) wird . weh altiue comedia . ① A weder bietet ye TLTM ) is called parallel W. r . ho T , i l µ = 0 ES E T (TM) . ② If z is a weder fields day a Curve c : IT M , then y is Called parallel alaugclw.r.no) , ill! 2)Ato HTEE ① delius an der detern . System of PDES , Lance in general there are no paddel weder fields . ② of Leuna 6.19 show , that parallel vf . day a Jixed were always ex ist , since they are seentiees of a first oder ODE . Prop.6.21-IM.hn/d.wihceftiiueconnneclieu ① Suppen c : In M is a- are and Rar! Ta! ataget Wecker d dt. ) , when to EI . Then 7 ! parallel neuer hehdzaeaegcs.to quo) = Rat. ) ° ② In the setting of ① , super Ito , ti EI - Thees PEEK) : Tat! → Tat! Ratet '→ 24 ) ( www y ) . is the never hadis a linear isemorai.su . es . It is called the parallel treu) Part day c ddom.by! Proof . ① Suppen ① were elreodylroued Leer leeres wih CLI ) - louhoihad in tue down of a Single hart. By langsames : her ey t , EI , ctto , t ) ) Can be Loved by Jinitaly mag warts in eou of whichis deficient by usswnpniaaudbywn.quonessteedlf.in. coiuci des on the iutosectens ef tue ceedbs . ~) we get well del . sd . 2 doug Ito, ti . If CLI ) is ueuhoiued in a end ( Un ) , denen ② of Leena 6.19. Shows that Puk ) htt =D is eepiiv . to the system of first oder Liner ODES : µ ) ' (t) t ¥4 ) ' lt) gilt) " KH) - O - Hk = 1, . . ) h . White indies ① und ebo ② .