Homework 2—Global Analysis

Due date:1.11.2020

- 1. Consider the general linear group $\operatorname{GL}(n, \mathbb{R})$ and the special linear group $\operatorname{SL}(n, \mathbb{R})$. We have seen that they are submanifolds of $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$ (even so called Lie groups) and that $T_{\operatorname{Id}}\operatorname{GL}(n, \mathbb{R}) \cong M_n(\mathbb{R}) = \mathbb{R}^{n^2}$.
 - (a) Compute the tangent space $T_{Id}SL(n,\mathbb{R})$ of $SL(n,\mathbb{R})$ at the identity Id.
 - (b) Fix A ∈ SL(n, ℝ) and consider the conjugation conj_A : SL(n, ℝ) → SL(n, ℝ) by A given by conj_A(B) = A⁻¹BA. Show that conj_A is smooth and compute the derivative T_{Id}conj_A : T_{Id}SL(n, ℝ) → T_{Id}SL(n, ℝ).
 - (c) Consider the map Ad : $SL(n, \mathbb{R}) \to Hom(T_{Id}SL(n, \mathbb{R}), T_{Id}SL(n, \mathbb{R}))$ given by $Ad(A) := T_{Id}conj_A$. Show that Ad is smooth and compute $T_{Id}Ad$.
- 2. Consider \mathbb{R}^n equipped with the standard inner product of signature (p,q) (where p+q=n) given by

$$\langle x, y \rangle := \sum_{i=1}^{p} x_i y_i - \sum_{i=p+1}^{n} x_i y_i$$

and the group of linear orthogonal transformation of $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ given by

$$\mathbf{O}(p,q) := \{ A \in \mathbf{GL}(n,\mathbb{R}) : \langle Ax, Ay \rangle = \langle x, y \rangle \quad \forall x, y \in \mathbb{R}^n \}.$$

(a) Show that

$$O(p,q) = \{A \in GL(n,\mathbb{R}) : A^{-1} = I_{p,q}A^t I_{p,q}\},\$$

where $I_{p,q} = \begin{pmatrix} Id_p & 0\\ 0 & -Id_q \end{pmatrix}$, and that O(p,q) is a submanifold of $M_n(\mathbb{R})$. What is its dimension?

- (b) Show that O(p,q) is a subgroup of GL(n, ℝ) with respect to matrix multiplication µ and that µ : O(p,q) × O(p,q) → O(p,q) is smooth (i.e. that O(p,q) is a Lie group.)
- (c) Compute the tangent space $T_{Id}O(p,q)$ of O(p,q) at the identity Id.