Homework 5-Global Analysis

Due date: 1.15.2020

1. Suppose $p: E \rightarrow M$ and $q: F \rightarrow M$ are vector bundles over M. Show that their direct sum $E \oplus F:=\sqcup_{x \in M} E_{x} \oplus F_{x} \rightarrow M$ and their tensor product $E \otimes F:=$ $\sqcup_{x \in M} E_{x} \otimes F_{x} \rightarrow M$ are again vector bundles over M.
2. Suppose $E \subset T M$ is a smooth distribution of rank k on a manifold M of dimension n and denote by $\Omega(M)$ the vector space of differential forms on M.
(a) Show that locally around any point $x \in M$ there exists (local) 1-forms $\omega^{1}, \ldots, \omega^{n-k}$ such that for any (local) vector field ξ one has: ξ is a (local) section of $E \Longleftrightarrow$ $\omega_{i}(\xi)=0$ for all $i=1, \ldots, n-k$.
(b) Show that E is involutive \Longleftrightarrow whenever $\omega^{1}, \ldots, \omega^{n-k}$ are local 1-forms as in (a) then there exists local 1-forms $\mu^{i, j}$ for $i, j=1, \ldots, n-k$ such that

$$
d \omega^{i}=\sum_{j=1}^{n-k} \mu^{i, j} \wedge \omega^{j}
$$

(c) Show

$$
\Omega_{E}(M):=\left\{\omega \in \Omega(M):\left.\omega\right|_{E}=0\right\} \subset \Omega(M)
$$

is an ideal of the algebra $(\Omega(M), \wedge)$. Here, $\left.\omega\right|_{E}=0$ for a ℓ-form ω means that $\omega\left(\xi_{1}, \ldots, \xi_{\ell}\right)=0$ for any sections $\xi_{1}, \ldots \xi_{\ell}$ of E.
(d) An ideal \mathcal{J} of $(\Omega(M), \wedge)$ is called differential ideal, if $d(\mathcal{J}) \subset \mathcal{J}$. Show that $\Omega_{E}(M)$ is a differential ideal $\Longleftrightarrow E$ is involutive.
3. Suppose M is a manifold and $D_{i}: \Omega^{k}(M) \rightarrow \Omega^{k+r_{i}}(M)$ for $i=1,2$ a graded derivation of degree r_{i} of $(\Omega(M), \wedge)$.
(a) Show that

$$
\left[D_{1}, D_{2}\right]:=D_{1} \circ D_{2}-(-1)^{r_{1} r_{2}} D_{2} \circ D_{1}
$$

is a graded derivation of degree $r_{1}+r_{2}$.
(b) Suppose D is a graded derivation of $(\Omega(M), \wedge)$. Let $\omega \in \Omega^{k}(M)$ be a differential form and $U \subset M$ an open subset. Show that $\left.\omega\right|_{U}=0$ implies $\left.D(\omega)\right|_{U}=0$.

Hint: Think about writing 0 as $f \omega$ for some smooth function f and use the defining properties of a graded derivation.
(c) Suppose D and \tilde{D} are two graded derivations such that $D(f)=\tilde{D}(f)$ and $D(d f)=\tilde{D}(d f)$ for all $f \in C^{\infty}(M, \mathbb{R})$. Show that $D=\tilde{D}$.
4. Suppose M is a manifold and $\xi, \eta \in \Gamma(T M)$ vector fields.
(a) Show that the insertion operator $i_{\xi}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ is a graded derivation of degree -1 of $(\Omega(M), \wedge)$.
(b) Recall from class that $[d, d]=0$. Verify (the remaining) graded-commutator relations between $d, \mathcal{L}_{\xi}, i_{\eta}$:
(i) $\left[d, \mathcal{L}_{\xi}\right]=0$.
(ii) $\left[d, i_{\xi}\right]=d \circ i_{\xi}+i_{\xi} \circ d=\mathcal{L}_{\xi}$.
(iii) $\left[\mathcal{L}_{\xi}, \mathcal{L}_{\eta}\right]=\mathcal{L}_{[\xi, \eta]}$.
(iv) $\left[\mathcal{L}_{\xi}, i_{\eta}\right]=i_{[\xi, \eta]}$.
(v) $\left[i_{\xi}, i_{\eta}\right]=0$.

Hint: Use (c) from 2.

