Homework 5—Global Analysis

Due date: 1.15.2020

- 1. Suppose $p: E \to M$ and $q: F \to M$ are vector bundles over M. Show that their direct sum $E \oplus F := \bigsqcup_{x \in M} E_x \oplus F_x \to M$ and their tensor product $E \otimes F := \bigsqcup_{x \in M} E_x \otimes F_x \to M$ are again vector bundles over M.
- 2. Suppose $E \subset TM$ is a smooth distribution of rank k on a manifold M of dimension n and denote by $\Omega(M)$ the vector space of differential forms on M.
 - (a) Show that locally around any point x ∈ M there exists (local) 1-forms ω¹, ..., ω^{n-k} such that for any (local) vector field ξ one has: ξ is a (local) section of E ⇔ ω_i(ξ) = 0 for all i = 1, ..., n − k.
 - (b) Show that E is involutive \iff whenever $\omega^1, ..., \omega^{n-k}$ are local 1-forms as in (a) then there exists local 1-forms $\mu^{i,j}$ for i, j = 1, ..., n k such that

$$d\omega^i = \sum_{j=1}^{n-k} \mu^{i,j} \wedge \omega^j.$$

(c) Show

$$\Omega_E(M) := \{ \omega \in \Omega(M) : \omega|_E = 0 \} \subset \Omega(M)$$

is an ideal of the algebra $(\Omega(M), \wedge)$. Here, $\omega|_E = 0$ for a ℓ -form ω means that $\omega(\xi_1, ..., \xi_\ell) = 0$ for any sections $\xi_1, ..., \xi_\ell$ of E.

- (d) An ideal \mathcal{J} of $(\Omega(M), \wedge)$ is called differential ideal, if $d(\mathcal{J}) \subset \mathcal{J}$. Show that $\Omega_E(M)$ is a differential ideal $\iff E$ is involutive.
- 3. Suppose M is a manifold and $D_i : \Omega^k(M) \to \Omega^{k+r_i}(M)$ for i = 1, 2 a graded derivation of degree r_i of $(\Omega(M), \wedge)$.
 - (a) Show that

$$[D_1, D_2] := D_1 \circ D_2 - (-1)^{r_1 r_2} D_2 \circ D_1$$

is a graded derivation of degree $r_1 + r_2$.

(b) Suppose D is a graded derivation of $(\Omega(M), \wedge)$. Let $\omega \in \Omega^k(M)$ be a differential form and $U \subset M$ an open subset. Show that $\omega|_U = 0$ implies $D(\omega)|_U = 0$.

Hint: Think about writing 0 as $f\omega$ for some smooth function f and use the defining properties of a graded derivation.

- (c) Suppose D and \tilde{D} are two graded derivations such that $D(f) = \tilde{D}(f)$ and $D(df) = \tilde{D}(df)$ for all $f \in C^{\infty}(M, \mathbb{R})$. Show that $D = \tilde{D}$.
- 4. Suppose M is a manifold and $\xi, \eta \in \Gamma(TM)$ vector fields.
 - (a) Show that the insertion operator $i_{\xi} : \Omega^k(M) \to \Omega^{k-1}(M)$ is a graded derivation of degree -1 of $(\Omega(M), \wedge)$.
 - (b) Recall from class that [d, d] = 0. Verify (the remaining) graded-commutator relations between $d, \mathcal{L}_{\xi}, i_{\eta}$:
 - (i) $[d, \mathcal{L}_{\xi}] = 0.$
 - (ii) $[d, i_{\xi}] = d \circ i_{\xi} + i_{\xi} \circ d = \mathcal{L}_{\xi}.$
 - (iii) $[\mathcal{L}_{\xi}, \mathcal{L}_{\eta}] = \mathcal{L}_{[\xi,\eta]}.$
 - (iv) $[\mathcal{L}_{\xi}, i_{\eta}] = i_{[\xi, \eta]}.$
 - (v) $[i_{\xi}, i_{\eta}] = 0.$

Hint: Use (c) from 2.