Homework 1—Global Analysis

Due date:18.10.2020

1. Consider the **cylinder** in \mathbb{R}^3 given by the equation

$$M := \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = R^2 \},\$$

where R > 0. Show that M is a 2-dimensional submanifold in \mathbb{R}^3 . Moreover, give formula for local parametrizations and local trivializations, and a description of M as a local graph.

2. Consider a **double cone** given by rotating a line through 0 of slope α around the *z*-axis in \mathbb{R}^3 . It is given by the equation

$$z^{2} = (\tan \alpha)^{2} (x^{2} + y^{2}).$$

At which points is the double cone a smooth submanifold of \mathbb{R}^3 ? Around the points where it is give a formula for local parametrizations and trivializations, and a description of it as a local graph.

3. Denote by $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ the *nm*-dimensional vector space of linear maps from \mathbb{R}^n to \mathbb{R}^m . Consider the subset $\operatorname{Hom}_r(\mathbb{R}^n, \mathbb{R}^m)$ of linear maps in $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ of rank *r*. Show that $\operatorname{Hom}_r(\mathbb{R}^n, \mathbb{R}^m)$ is a submanifold of dimension of r(n + m - r) in $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$.

Hint: Let $T_0 \in \text{Hom}_r(\mathbb{R}^n, \mathbb{R}^m)$ be a linear map of rank r and decompose \mathbb{R}^n and \mathbb{R}^m as follows

$$\mathbb{R}^n = E \oplus E^{\perp}$$
 and $\mathbb{R}^m = F \oplus F^{\perp}$, (0.1)

where F equals the image of T_0 and E^{\perp} the kernel of T_0 , and $(\cdot)^{\perp}$ denotes the orthogonal complement. Note that dim $E = \dim F = r$. With respect to (0.1) any $T \in \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ can be viewed as a matrix

$$T = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $A \in \text{Hom}(E, F)$, $B \in \text{Hom}(E^{\perp}, F)$, $C \in \text{Hom}(E, F^{\perp})$ and $D \in \text{Hom}(E^{\perp}, F^{\perp})$. Show that the set of matrices T with A invertible defines an open neighbourhood of T_0 and characterize the elements in this neighbourhood that have rank r (equivalently, the ones that have an (n - r)-dimensional kernel).