Homework 3-Global Analysis

Due date:17.11.2020

1. For a topological space M denote by $C^{0}(M)$ the vector space of continuous realvalued functions $f: M \rightarrow \mathbb{R}$. Any continuous map $F: M \rightarrow N$ between topological spaces M and N induces a map $F^{*}: C^{0}(N) \rightarrow C^{0}(M)$ given by $F^{*}(f):=f \circ F: M \rightarrow \mathbb{R}$.
(a) Show that F^{*} is linear.
(b) If M and N are (smooth) manifolds, show that $F: M \rightarrow N$ is smooth \Longleftrightarrow $F^{*}\left(C^{\infty}(N)\right) \subset C^{\infty}(M)$.
(c) If F is a homeomorphism between (smooth) manifolds, show that F is a diffeomorphism $\Longleftrightarrow F^{*}$ is an isomorphism.
2. Suppose $M=\mathbb{R}^{3}$ with standard coordinates (x, y, z). Consider the vector field

$$
\xi(x, y, z)=2 \frac{\partial}{\partial x}-\frac{\partial}{\partial y}+3 \frac{\partial}{\partial z} .
$$

How does this vector field look like in terms of the coordinate vector fields associated to the cylindrical coordinates (r, ϕ, z), where $x=r \cos \phi, y=r \sin \phi$ and $z=$ z ? Or with respect to the spherical coordinates (r, ϕ, θ), where $x=r \sin \theta \cos \phi$, $y=r \sin \theta \cos \phi$ and $z=r \cos \theta$?
3. Consider \mathbb{R}^{3} with coordinates (x, y, z) and the vector fields

$$
\begin{gathered}
\xi(x, y, z)=\left(x^{2}-1\right) \frac{\partial}{\partial x}+x y \frac{\partial}{\partial y}+x z \frac{\partial}{\partial z} \\
\eta(x, y, z)=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+2 x z^{2} \frac{\partial}{\partial z}
\end{gathered}
$$

Are they tangent to the cylinder $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{3}$ with radius 1 (i.e. do they restrict to vector fields on M)?
4. Suppose $M=\mathbb{R}^{2}$ with coordinates (x, y). Consider the vector fields $\xi(x, y)=y \frac{\partial}{\partial x}$ and $\eta(x, y)=\frac{x^{2}}{2} \frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are complete. Compute $[\xi, \eta]$ and its flow? Is $[\xi, \eta]$ complete?

