Homework 3—Global Analysis

Due date:17.11.2020

- 1. For a topological space M denote by $C^0(M)$ the vector space of continuous realvalued functions $f : M \to \mathbb{R}$. Any continuous map $F : M \to N$ between topological spaces M and N induces a map $F^* : C^0(N) \to C^0(M)$ given by $F^*(f) := f \circ F : M \to \mathbb{R}$.
 - (a) Show that F^* is linear.
 - (b) If M and N are (smooth) manifolds, show that $F: M \to N$ is smooth $\iff F^*(C^{\infty}(N)) \subset C^{\infty}(M)$.
 - (c) If F is a homeomorphism between (smooth) manifolds, show that F is a diffeomorphism $\iff F^*$ is an isomorphism.
- 2. Suppose $M = \mathbb{R}^3$ with standard coordinates (x, y, z). Consider the vector field

$$\xi(x, y, z) = 2\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + 3\frac{\partial}{\partial z}$$

How does this vector field look like in terms of the coordinate vector fields associated to the cylindrical coordinates (r, ϕ, z) , where $x = r \cos \phi$, $y = r \sin \phi$ and z = z? Or with respect to the spherical coordinates (r, ϕ, θ) , where $x = r \sin \theta \cos \phi$, $y = r \sin \theta \cos \phi$, $y = r \sin \theta \cos \phi$ and $z = r \cos \theta$?

3. Consider \mathbb{R}^3 with coordinates (x, y, z) and the vector fields

$$\xi(x, y, z) = (x^2 - 1)\frac{\partial}{\partial x} + xy\frac{\partial}{\partial y} + xz\frac{\partial}{\partial z}$$
$$\eta(x, y, z) = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + 2xz^2\frac{\partial}{\partial z}.$$

Are they tangent to the cylinder $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\} \subset \mathbb{R}^3$ with radius 1 (i.e. do they restrict to vector fields on M)?

4. Suppose $M = \mathbb{R}^2$ with coordinates (x, y). Consider the vector fields $\xi(x, y) = y \frac{\partial}{\partial x}$ and $\eta(x, y) = \frac{x^2}{2} \frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are complete. Compute $[\xi, \eta]$ and its flow? Is $[\xi, \eta]$ complete?