Homework 4-Global Analysis

Due date:1.12.2020

1. Let M be a (smooth) manifold and $\xi, \eta \in \mathfrak{X}(M)$ two vector fields on M. Show that
(a) $[\xi, \eta]=0 \Longleftrightarrow\left(\mathrm{Fl}_{t}^{\xi}\right)^{*} \eta=\eta$, whenever defined $\Longleftrightarrow \mathrm{Fl}_{t}^{\xi} \circ \mathrm{Fl}_{s}^{\eta}=\mathrm{Fl}_{s}^{\eta} \circ \mathrm{Fl}_{t}^{\xi}$, whenever defined.
(b) If N is another manifold, $f: M \rightarrow N$ a smooth map, and ξ and η are f-related to vector fields $\tilde{\xi}$ resp. $\tilde{\eta}$ on N, then $[\xi, \eta]$ is f-related to $[\tilde{\xi}, \tilde{\eta}]$.
2. Consider the general linear group $\operatorname{GL}(n, \mathbb{R})$. For $A \in \operatorname{GL}(n, \mathbb{R})$ denote by

$$
\begin{array}{ll}
\lambda_{A}: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R}) & \lambda_{A}(B)=A B \\
\rho_{A}: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R}) & \rho_{A}(B)=B A
\end{array}
$$

left respectively right multiplication by A, and by $\mu: \mathrm{GL}(n, \mathbb{R}) \times \mathrm{GL}(n, \mathbb{R}) \rightarrow$ $\mathrm{GL}(n, \mathbb{R})$ the multiplication map.
(a) Show that λ_{A} and ρ_{A} are diffeomorphisms for any $A \in \mathrm{GL}(n, \mathbb{R})$ and that

$$
T_{B} \lambda_{A}(B, X)=(A B, A X) \quad T_{B} \rho_{A}(B, X)=(B A, X A),
$$

where $(B, X) \in T_{B} \mathrm{GL}(n, \mathbb{R})=\left\{(B, X): X \in M_{n}(\mathbb{R})\right\}$.
(b) Show that

$$
T_{(A, B)} \mu((A, B),(X, Y))=T_{B} \lambda_{A} Y+T_{A} \rho^{B} X=(A B, A Y+X B)
$$

where $(A, B) \in \mathrm{GL}(n, \mathbb{R}) \times \mathrm{GL}(n, \mathbb{R})$ and $(X, Y) \in M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R})$.
(c) For any $X \in M_{n}(\mathbb{R}) \cong T_{I d} \mathrm{GL}(n, \mathbb{R})$ consider the maps

$$
\begin{array}{ll}
L_{X}: \mathrm{GL}(n, \mathbb{R}) \rightarrow T \mathrm{GL}(n, \mathbb{R}) & L_{X}(B)=T_{I d} \lambda_{B}(I d, X)=(B, B X) \\
R_{X}: \mathrm{GL}(n, \mathbb{R}) \rightarrow T \mathrm{GL}(n, \mathbb{R}) & R_{X}(B)=T_{I d} \rho_{B}(I d, X)=(B, X B) .
\end{array}
$$

Show that L_{X} and R_{X} are smooth vector field and that $\lambda_{A}^{*} L_{X}=L_{X}$ and $\rho_{A}^{*} R_{X}=R_{X}$ for any $A \in \mathrm{GL}(n, \mathbb{R})$. What are their flows? Are these vector fields complete?
(d) Show that $\left[L_{X}, R_{Y}\right]=0$ for any $X, Y \in M_{n}(\mathbb{R})$.
3. Suppose α_{j}^{i} for $i=1, \ldots, k$ and $j=1, \ldots, n$ are smooth real-valued functions defined on some open set $U \subset \mathbb{R}^{n+k}$ satisfying

$$
\frac{\partial \alpha_{j}^{i}}{\partial x^{k}}+\alpha_{k}^{\ell} \frac{\partial \alpha_{j}^{i}}{\partial z^{\ell}}=\frac{\partial \alpha_{k}^{i}}{\partial x^{j}}+\alpha_{j}^{\ell} \frac{\partial \alpha_{k}^{i}}{\partial z^{\ell}}
$$

where we write $(x, z)=\left(x^{1}, \ldots, x^{n}, z^{1}, \ldots, z^{k}\right)$ for a point in \mathbb{R}^{n+k}. Show that for any point $\left(x_{0}, z_{0}\right) \in U$ there exists an open neighbourhood V of x_{0} in \mathbb{R}^{n} and a unique C^{∞} _map $f: V \rightarrow \mathbb{R}^{k}$ such that

$$
\frac{\partial f^{i}}{\partial x^{j}}\left(x^{1}, \ldots, x^{n}\right)=\alpha_{j}^{i}\left(x^{1}, \ldots, x^{n}, f^{1}(x), \ldots, f^{k}(x)\right) \quad \text { and } \quad f\left(x_{0}\right)=z_{0}
$$

In the class/tutorial we proved this for $k=1$ and $j=2$.
4. Which of the following systems of PDEs have solutions $f(x, y)$ (resp. $f(x, y)$ and $g(x, y)$) in an open neighbourhood of the origin for positive values of $f(0,0)$ (resp. $f(0,0)$ and $g(0,0))$?
(a) $\frac{\partial f}{\partial x}=f \cos y$ and $\frac{\partial f}{\partial y}=-f \log f \tan y$.
(b) $\frac{\partial f}{\partial x}=e^{x f}$ and $\frac{\partial f}{\partial y}=x e^{y f}$.
(c) $\frac{\partial f}{\partial x}=f$ and $\frac{\partial f}{\partial y}=g ; \frac{\partial g}{\partial x}=g$ and $\frac{\partial g}{\partial y}=f$.

