Home work 4 : Ä: ÷: :÷ - 4. 4 . Differential fernes Det.IM mfd . ① Aldiffeeulid) k form an M is a (I )Tensor we TI (M ) s . t . wk) e MIM Ux EM . ② We wrihe h " (M) for the vector space of K fernes an M , while is also modul over IM .IR) - H ' , asubspoce ofTE IM ) . Convention A. ° (M) : = LM.IR) . Note for k > dimm ) one two R" (M) = 0 . Reina . AFM : = Gut " M ETM ① . . ① TM is u weder subbuudle euer M . k • R " (m ) = T ( 1 " TM) By Prop . 4.10 , we can beneide o k form we RKLM) also as a k linear , dteuoliug uwp w : TITM) x . . . x TLTM) → CNN.IR) that is linear in dem euvy over ( * IM .IR) . Def.4.12-supp.ae f : MAN is a C- ueop hekweeu uefds . If we R " IN) , then ÄW , Called the pull- back of w Viet , is a k form an M giveu by Fw HK . . , s ) : = wlfk)) (Ifs, k), . . T.fs.la) ) K Si E T (TM ) . If Sa . . . ihre TLTM ) , für Lsa, . . , s . ) (w . f) (Tt . ! ". _ , Tfos. ) www.swowsthotfkrisiudeedosmootntluserfidcdon M . Rennen In general an conpultpbocn ( I ) - Tensors Vie mops . We love a naturel ueop ' Alt : TILM) → R " LM ) Attlo) ) : = Alt × ) V-x.CM . whre WERK In) Altlw ) = w . Def.4.tl If we R " LM ) und gehe( M) then the n Wedge product way E Akte (M) is gun by (way ) k ) : = 4^4 = Alt Lwx 4) VXEM . For f E ROLM) = ( re , R ) and we R" LM ) : fnw = fw . By live.by we can abend this to a li war ueop ^ : ULM ) x DTM ) → ein ) dim IM ) whee SEIN ) = ⑦ • " IM ) . K=D By Prep . 4.7 we how . Prop.tn The vector space R ' ( M ) : = ! RKLM ) is an lossocide , neutral) groelend ↳ uuuhdie algebra euer tue trug OLM , IR) ( in purem our IR) , i e . it sdistie , ① ⑤ of Pvp. 4.7 , since poiutwize . Papi her f : M N ke a Amap hehweeuuehds . Then f ' : R " IN) → h " LM ) exkuahs to a morphin f ' : h . ( N ) → ATM ) of ( uuitid) godaddy.ba s : i. e . t ' is linear , f- ' 1--1 , f- ' ( ng ) = für ffand t ' ( RUND c MIN) . Moreau , if g : NT P is ouoku ueop hekueeu ufels , Leon (g. f) * = f : ; Profis First adoiu fdl.ws freu See . 4.2 Since für G) = f)IHK)) [Txf : IM → Tf iudnces #f) ' : MT N → NIM and tue se cand Chain also freu tue t T (g. f) = Tgotf . O It IV. n ) is wert , then dui { ^^ . . ndnin : 1 Ein < izc . . < in Ek} forma basis of 1 " M = AKTIV Xx EU . If we R " (M ) , then < Local Gordie . WIE „ §,! in- - in dein . . nduin * rassig www.t(Un ) . for w " .. ; " E IV. R ) . Wi. . i. = w (% , . . . !) Recall that we have on operator : d : IM .IR ) → RUM ) dlf ) = dt We war eeteud this to on operator d :b " IM) - h "" IM ) . for any K 30 . Def.4.IM mfdl . , WER " (M) . Then we dehne v → (MIR) .dw : TLTM ) × . . × TITM ) dwls.is. . . . , su ) : = ÄH) si . wl? . . . .it . . . is . ) ← + ¥, l-njtiwltsi.si] , so . . . Ä , _ . II. , . - es.),Wwe Ä uueeu , we am it this entry . By lruearrhy , we war exteud it to a hier uuep d: SELM) → SELM ) , called the externer derivate loncdiff. fernes ) " lemma4.17-dw.ch " " (m ) Prof . dw is alternativ : Suppe sj-s.sn dw (so , . . Iss , Sitz , . . .hu ) = (1) sj W (so , II. sj . . . . . . ! ) ) - was _ ⇐ {II" Hiss. ) I •tun, } o =/ + ¥! w iii. so - isis; %:) and g) = t ? ' wksi.si/s.Y..sj.j, ;) \ + jijt 1 • dw is (M.IR) linear in eon entry ; by King alhoud.mg ist is sufficieut to Check it for one entry : f- EGMR) fl; - also, ]. . ) t Kit ! wls. " s . ) ndwAso , 4 , . . , su ) = fs. . wlsn . . . .nu/t!tnIsi.Pfso, § .. . " ) fürs) -4; - f)so + Lwiw Htt . I. . . . ! ) + ¥ ?: " (M) si . Dlwn g) = = DIW) n qt HI " wa Dz Kw e- R " IM) , gehe ( M ) . - Prophet ① d is a grund derivation of degree 1 ② For s E TLTM ) , Lg is grodud derivaten of degree O . ③ For } E TITM) , is is a groelend deine Hen of degree - 1 . Marlow , II Ds and Dz are groduddeivdeus of degree r , resp . rz , then ID . . Da] : = Di Dz - L- 1) " " Du D , is o groelend derivation of degree rntrz . Prod ① und ② ✓ the rest will ↳ oliscusseed in hutoriel W I Leave a on exercise . Prop.4.23-supg.ae D is o grad deiveta of degree ref (riley, ) ① D is a Loud operator : If WE R" LM) valides rdeulrudly an on open subset of M , then so does Dw . ② It Ä is awww groded deine Hen of degree r Sun Kid Dlf ) = Dlf ) and ⑦ (df) =D Idf ) tf ECR). then D= 5 . PI . Exercise / Tuterid . Prop.h.24-Mmtd.ih.ME t HM ) ' ⑥ [ is.iq] = ① [ d. d) = d. L , L;D = 0 istoigtiyois - O ② Id , i , ] = doi , t i > od = Lg ③ [ d. d ] = Zdz =D PRI Exercise) ④ tds.ly] =L , .dz - Lg-2 , =L , .gg . thhaid . ⑤ Eds , i ) = h , .iq - iyod, = ihn] Reinen d is there here unique groelend dein of degree 1 s . l . Df = df and D (df ) =D . L , is the unique grodud dein . of →, - O S. L 2 , f = dfls) = s . f 2. (df ) = dlsf) . 5.lu/-egrationoum-n Recall tho transformation formula for multiple integrals : Suppe UEIR" is on open Sunset and § . U → 0/10) a olitteau . between open kebsets of IR" . het f : Ötv) → IR he a G- fctwihloupodsurr.at ↳¥, = { ( too ) Idet Dot (*) . ↳oks like the transformation of n torus on on man ! fdds of dimm : Suppe M mfd . , deine ( M) - h , we R " LM ) and LU , n) is n Chart of M : Then wtu-wi.eu dein . . ndu " w !. . wtf , - jun) . E CO, R) . Suppe v : U → v LU) is on . der Chart for Mae U . Then WI " = Wi. . n dir . . ndv " w!. nluüly) ) = wlüily) ) (In - ' es , . . . Tyeiiea ) wi.nl#nEg)--wlv-ily)LEv1es , . . , Iv een ) Y C- u LU) ZE v ( U) . Now let OI : ulo) → v (U ) he ¢ : - v. u ' = , v. ! d = ü ' and Tyü ' = Toll) - to Id - w:. . Lily)) wlüly)) ( Tyne. . . . . Inne. ) 4)EilHyde, . . . = wlu" (y ) ) (Tg) : Typen , . . . , Taiji! Idk ) " Iden) = det ( Dg) wlülg) ) ( Thünen . . . .to/yjien)=detlDgo)wi.ndly) ) . We ! ulwtly) ) = det (Dyd) w !. . dolly) ) . H O Hye ulu ) If we oss neue U hohe wonne und und Lance so is ' n (U), then sign of der ( by 4) is eihwdwoy, peilte er negative . (*) Says that the integral over the Loud werdende Express) on of here for . wn . . " ( Ws - now ' : ulot → R ) Is up to a Sign Independent of cuoice of the Eat .