M7777 Applied Functional Data Analysis 12. Sparse FDA

Jan Koláček (kolacek@math.muni.cz)

Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno

Sparse FDA

Ebay Auctions

Jank and Shmueli, 2007

- 7-Day auctions for new Palm M515 PDAs
- 149 Auctions, collected May-June 2003

Sample of 10 auctions - bid histories.

Sparse FDA

Auction Price

- Only increases if bid is greater than current price

Sample of 10 auctions - price histories.

Sparse FDA

We will consider a model

$$
Y_{i j}=\underbrace{\mu\left(t_{i j}\right)+\varepsilon_{i}\left(t_{i j}\right)}_{x_{i}\left(t_{i j}\right)}+\delta_{i j},
$$

for $1 \leq i \leq n, 1 \leq j \leq n_{i}$, with assumptions
$\mu(t) \ldots$ the mean function (required to be smooth)
$\varepsilon_{i}(t) \ldots$ subject specific error functions, induce correlation between observations on the same subject, let's denote $c(s, t)=\operatorname{Cov}(X(s), X(t))=\operatorname{Cov}(\varepsilon(s), \varepsilon(t))$
$\delta_{i j} \ldots$ errors explaining measurement noise, iid across both i and j, let's denote $\operatorname{Var}\left(\delta_{i j}\right)=\sigma^{2}\left(t_{i j}\right)$.
It means, that we observe a process $Y(t)$ in n samples $X_{i}(t)$, the i-th sample is observed in times $t_{1}, \ldots, t_{n_{i}}$ with setting

$$
\operatorname{Cov}(Y(s), Y(t))=c(s, t)+\sigma^{2}(s) I_{s=t}
$$

Sparse FDA

The Main Idea

(1) Let us consider all measurements $Y_{i j}, 1 \leq i \leq n, 1 \leq j \leq n_{i}$
(2) Get an estimate $\hat{\mu}(t)$ of the mean function $\mu(t)$ (nonparametric, e.g. local linear kernel smoother, spline smoothing etc.)

Sparse FDA

(3) Let us consider a set of time points pairs

$$
\mathbf{T}=\left\{\left(t_{i j_{1}}, t_{i j_{2}}\right): 1 \leq i \leq n, 1 \leq j_{1} \leq n_{i}, 1 \leq j_{2} \leq n_{i}, j_{1} \neq j_{2}\right\}
$$

with its values

$$
Z\left(t_{i j_{1}}, t_{i j_{2}}\right)=\left(Y_{i j_{1}}-\hat{\mu}\left(t_{i j_{1}}\right)\right)\left(Y_{i j_{2}}-\hat{\mu}\left(t_{i j_{2}}\right)\right),\left(t_{i j_{1}}, t_{i j_{2}}\right) \in \mathbf{T}
$$

and get the covariance surface estimate $\hat{c}(s, t)$ (bivariate local linear etc.).

Sparse FDA

Samples: 1

Sparse FDA

Samples: 2

Sparse FDA

Samples: 3

Sparse FDA

Samples: all

Sparse FDA

Auction Price

Raw Covariance Plot, black - diagonal terms

Sparse FDA

Auction Price

Covariance Estimate $\hat{c}(s, t)$, diagonal exluded

Sparse FDA

(4) Take diagonal terms only

$$
\mathbf{T}_{\text {diag }}=\left\{\left(t_{i j}, t_{i j}\right): 1 \leq i \leq n, 1 \leq j \leq n_{i}\right\} \text { and its } Z\left(t_{i j}, t_{i j}\right)
$$

and by a univariate smoother get $\tilde{c}(t, t)$. Thus, an estimate of $\sigma^{2}(t)$

$$
\hat{\sigma}^{2}(t)=\tilde{c}(t, t)-\hat{c}(t, t)
$$

(5) The estimate of $\operatorname{Cov}(Y(s), Y(t))$ takes the form

$$
\hat{\sigma}(s, t)=\hat{c}(s, t)+\hat{\sigma}^{2}(t)
$$

Sparse FDA

Auction Price

Variance Estimate $\hat{\sigma}^{2}$

Sparse FDA

Auction Price

Covariance Estimate $\hat{\sigma}(s, t)=\hat{c}(s, t)+\hat{\sigma}^{2}(t)$

Sparse FDA

Auction Price

Comparison of Variance Estimates

Sparse FDA

(6) Let's consider the estimate of $\hat{\sigma}(s, t)$ and its Karhunen - Loève decomposition for functions

$$
\hat{\sigma}(s, t)=\sum_{j=1}^{\infty} \lambda_{j} \xi_{j}(s) \xi_{j}(t) \Rightarrow \text { obtain } \hat{\xi}_{j}(t), \hat{\lambda}_{j}, j=1, \ldots, K
$$

$\left(7\right.$ Estimate principal scores $c_{i j}=\int \xi_{j}(t)\left[Y_{i}(t)-\mu(t)\right] d t$ through the conditional expectation

$$
\hat{c}_{i j}=\mathrm{E}\left[c_{i j} \mid \mathbf{Y}_{i}\right]=\hat{\lambda}_{j} \hat{\xi}_{j}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1}\left(\mathbf{Y}_{i}-\hat{\boldsymbol{\mu}}_{i}\right)
$$

Yao et al. (2005)
8 Finally, reconstruct the whole curves

$$
\widehat{Y}_{i}(t)=\hat{\mu}(t)+\sum_{j=1}^{K} \hat{c}_{i j} \hat{j}_{j}(t)
$$

Filled Data

Auction Price - proposed method

Auction Prices Estimates

Filled Data

Auction Price - FDAPACE

Kernel Smoothing

Mean function estimate

Local linear smoother with global bandwidth

$$
\sum_{i=1}^{n} \sum_{j=1}^{N_{i}}\left[K\left(\frac{T_{i j}-t}{h}\right) Y_{i j}-\beta_{0}-\beta_{1}\left(t-T_{i j}\right)\right]^{2} \rightarrow \min
$$

- $K(x) \ldots$ kernel function (a symmetric density)
- h...global bandwidth
- $\hat{\mu}(t)=\hat{\beta}_{0}(t)$

Kernel Smoothing

Kernel Smoothing

Undersmoothing

Kernel Smoothing

Mean function estimate

Local linear smoother with global bandwidth

$$
\sum_{i=1}^{n} \sum_{j=1}^{N_{i}}\left[K\left(\frac{T_{i j}-t}{h}\right) Y_{i j}-\beta_{0}-\beta_{1}\left(x-T_{i j}\right)\right]^{2} \rightarrow \min
$$

Local linear smoother with local bandwidth (Fan \& Gijbels (1992))

$$
\sum_{i=1}^{n} \sum_{j=1}^{N_{i}}\left[\alpha\left(T_{i j}\right) K\left(\frac{T_{i j}-t}{h} \alpha\left(T_{i j}\right)\right) Y_{i j}-\beta_{0}-\beta_{1}\left(t-T_{i j}\right)\right]^{2} \rightarrow \min
$$

optimal $\alpha(\cdot) \sim f^{1 / 5}(\cdot)$

Kernel Smoothing

Simulation

Kernel Smoothing

Covariance function estimate

Local linear smoother with global bandwidth

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{\substack{j_{1}=1 \\
j_{1} \neq j_{2}}}^{N_{i}} \sum_{j_{2}=1}^{N_{i}} & {\left[K\left(\frac{T_{i j_{1}}-s}{h}, \frac{T_{i j_{2}}-t}{h}\right) Z\left(T_{i j_{1}}, T_{i j_{2}}\right)\right.} \\
& \left.-\beta_{0}-\beta_{11}\left(s-T_{i j_{1}}\right)-\beta_{12}\left(t-T_{i j_{2}}\right)\right]^{2} \rightarrow \min
\end{aligned}
$$

- $\hat{c}(s, t)=\hat{\beta}_{0}(s, t)$
- goal: adapt the local bandwidth method

Kernel Smoothing

Covariance function estimate

Local linear smoother with local bandwidth

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{\substack{j_{1}=1 \\
j_{1} \neq j_{2}}}^{N_{i}} \sum_{j_{2}=1}^{N_{i}}\left[\alpha\left(T_{i j_{1}}\right) \alpha\left(T_{i j_{2}}\right) K\left(\frac{T_{i j_{1}}-s}{h} \alpha\left(T_{i j_{1}}\right), \frac{T_{i j_{2}}-t}{h} \alpha\left(T_{i j_{2}}\right)\right) Z\left(T_{i j_{1}}, T_{i j_{2}}\right)\right. \\
\left.-\beta_{0}-\beta_{11}\left(s-T_{i j_{1}}\right)-\beta_{12}\left(t-T_{i j_{2}}\right)\right]^{2} \rightarrow \min
\end{gathered}
$$

Known issues:

- symmetry of $\hat{c}(s, t)$ (OK for symmetric kernels)
- positive definiteness of $\hat{c}(s, t)$ (particularly depends on h)
- optimal $\alpha(\cdot)$
- optimal h

Problems to solve

(1) Motor Oil Data

The dataset contains amount of Fe particles depending on operating time and a number of oil changes. Data were collected 2006 - 2016 from 29 heavy-duty army vehicles.

- Load the variable df.motor from the motoroil.RData file and plot it (see Figure 1).
- Use functions from the file functionsM7777.R to fill the data (see Figure 2).
- Try to neglect the number of oil changes and put all groups together (see Figure 3).
- Fill the data using one of mentioned methods (see Figure 4).
- Do the same with using the FPCA package and compare results (see Figures 5, 6).
- (optional) Is the number of oil changes negligible? Conduct the fANOVA analysis. Is it correct to do it?

Problems to solve

Motor Oil Data

Figure 1.

Problems to solve

Motor Oil Data - filled

Figure 2.

Problems to solve

Motor Oil Data

Figure 3.

Problems to solve

Motor Oil Data - filled

Figure 4.

Problems to solve

functionsM777.R

Figure 5.

Problems to solve

FDAPACE

Figure 6.

