M7777 Applied Functional Data Analysis 12. Sparse FDA

Jan Koláček (kolacek@math.muni.cz)

Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno

Ebay Auctions

Jank and Shmueli, 2007

- 7-Day auctions for new Palm M515 PDAs
- 149 Auctions, collected May-June 2003

Sample of 10 auctions - bid histories.

Auction Price

• Only increases if bid is greater than current price

Sample of 10 auctions – price histories.

Jan Koláček (SCI MUNI)

We will consider a model

$$Y_{ij} = \underbrace{\mu(t_{ij}) + \varepsilon_i(t_{ij})}_{X_i(t_{ij})} + \delta_{ij},$$

for $1 \leq i \leq n$, $1 \leq j \leq n_i$, with assumptions

 $\mu(t)$... the mean function (required to be smooth)

- $\varepsilon_i(t) \dots$ subject specific error functions, induce correlation between observations on the same subject, let's denote $c(s,t) = \text{Cov}(X(s), X(t)) = \text{Cov}(\varepsilon(s), \varepsilon(t))$
 - δ_{ij} ... errors explaining measurement noise, iid across both *i* and *j*, let's denote $Var(\delta_{ij}) = \sigma^2(t_{ij})$.

It means, that we observe a process Y(t) in *n* samples $X_i(t)$, the *i*-th sample is observed in times t_1, \ldots, t_{n_i} with setting

$$\operatorname{Cov}(Y(s), Y(t)) = c(s, t) + \sigma^2(s)I_{s=t}.$$

The Main Idea

- 1 Let us consider all measurements Y_{ij} , $1 \le i \le n$, $1 \le j \le n_i$
- 2 Get an estimate $\hat{\mu}(t)$ of the mean function $\mu(t)$ (nonparametric, e.g. local linear kernel smoother, spline smoothing etc.)

3 Let us consider a set of time points pairs

$$\mathbf{T} = \{ (t_{ij_1}, t_{ij_2}) : 1 \le i \le n, 1 \le j_1 \le n_i, 1 \le j_2 \le n_i, j_1 \ne j_2 \}$$

with its values

$$Z(t_{ij_1},t_{ij_2}) = (Y_{ij_1} - \hat{\mu}(t_{ij_1}))(Y_{ij_2} - \hat{\mu}(t_{ij_2})), \; (t_{ij_1},t_{ij_2}) \in {\mathsf T}$$

and get the covariance surface estimate $\hat{c}(s, t)$ (bivariate local linear etc.).

Samples: 1

Samples: 2

Samples: 3

Samples: all

Jan Koláček (SCI MUNI)

Auction Price

Raw Covariance Plot, black - diagonal terms

t

Jan Koláček (SCI MUNI)

Auction Price

Covariance Estimate $\hat{c}(s, t)$, diagonal exluded

Jan Koláček (SCI MUNI)

4 Take diagonal terms only

$$\mathbf{T}_{diag} = \{(t_{ij}, t_{ij}) : 1 \leq i \leq n, 1 \leq j \leq n_i\}$$
 and its $Z(t_{ij}, t_{ij})$

and by a univariate smoother get $\tilde{c}(t, t)$. Thus, an estimate of $\sigma^2(t)$

$$\hat{\sigma}^2(t) = \tilde{c}(t,t) - \hat{c}(t,t).$$

5 The estimate of Cov(Y(s), Y(t)) takes the form

$$\hat{\sigma}(s,t) = \hat{c}(s,t) + \hat{\sigma}^2(t)$$

Auction Price

Variance Estimate $\hat{\sigma}^2$

Jan Koláček (SCI MUNI)

Auction Price

Covariance Estimate $\hat{\sigma}(s,t) = \hat{c}(s,t) + \hat{\sigma}^2(t)$

Jan Koláček (SCI MUNI)

Auction Price

Comparison of Variance Estimates

Jan Koláček (SCI MUNI)

6 Let's consider the estimate of $\hat{\sigma}(s, t)$ and its Karhunen – Loève decomposition for functions

$$\hat{\sigma}(s,t) = \sum_{j=1}^{\infty} \lambda_j \xi_j(s) \xi_j(t) \quad \Rightarrow \text{ obtain } \hat{\xi}_j(t), \hat{\lambda}_j, \ j = 1, \dots, K.$$

7 Estimate principal scores $c_{ij} = \int \xi_j(t) [Y_i(t) - \mu(t)] dt$ through the conditional expectation

$$\hat{c}_{ij} = \mathsf{E}[c_{ij}|\mathbf{Y}_i] = \hat{\lambda}_j \hat{\mathbf{\xi}}_j^T \hat{\mathbf{\Sigma}}_i^{-1} (\mathbf{Y}_i - \hat{\boldsymbol{\mu}}_i)$$

Yao et al. (2005)

8 Finally, reconstruct the whole curves

$$\widehat{Y}_i(t) = \hat{\mu}(t) + \sum_{j=1}^{K} \hat{c}_{ij} \hat{\xi}_j(t).$$

Filled Data

Auction Price - proposed method

Auction Prices Estimates

Filled Data

Auction Price – FDAPACE

Auction Prices Estimates

Jan Koláček (SCI MUNI)

Mean function estimate

Local linear smoother with global bandwidth

$$\sum_{i=1}^{n}\sum_{j=1}^{N_{i}}\left[\mathcal{K}\left(\frac{T_{ij}-t}{h}\right)Y_{ij}-\beta_{0}-\beta_{1}(t-T_{ij})\right]^{2}\rightarrow\mathsf{min}$$

- $K(x) \dots$ kernel function (a symmetric density)
- h ... global bandwidth
- $\hat{\mu}(t) = \hat{\beta}_0(t)$

Jan Koláček (SCI MUNI)

Jan Koláček (SCI MUNI)

Jan Koláček (SCI MUNI)

Jan Koláček (SCI MUNI)

Jan Koláček (SCI MUNI)

Jan Koláček (SCI MUNI)

Fall 2019 19 / 30

Jan Koláček (SCI MUNI)

Jan Koláček (SCI MUNI)

Mean function estimate

Local linear smoother with global bandwidth

$$\sum_{i=1}^{n} \sum_{j=1}^{N_i} \left[K\left(\frac{T_{ij}-t}{h}\right) Y_{ij} - \beta_0 - \beta_1 (x - T_{ij}) \right]^2 \to \min$$

Local linear smoother with local bandwidth (Fan & Gijbels (1992))

$$\sum_{i=1}^{n}\sum_{j=1}^{N_{i}}\left[\alpha(T_{ij})K\left(\frac{T_{ij}-t}{h}\alpha(T_{ij})\right)Y_{ij}-\beta_{0}-\beta_{1}(t-T_{ij})\right]^{2}\rightarrow\min$$

optimal $\alpha(\cdot) \sim f^{1/5}(\cdot)$

Simulation

Covariance function estimate

Local linear smoother with global bandwidth

$$\sum_{i=1}^{n} \sum_{\substack{j_1=1\\j_1\neq j_2}}^{N_i} \sum_{\substack{j_2=1\\j_1\neq j_2}}^{N_i} \left[\mathcal{K}\left(\frac{T_{ij_1}-s}{h}, \frac{T_{ij_2}-t}{h}\right) Z(T_{ij_1}, T_{ij_2}) -\beta_0 - \beta_{11}(s - T_{ij_1}) - \beta_{12}(t - T_{ij_2}) \right]^2 \to \min$$

•
$$\hat{c}(s,t) = \hat{\beta}_0(s,t)$$

• goal: adapt the local bandwidth method

Covariance function estimate

Local linear smoother with local bandwidth

$$\sum_{i=1}^{n} \sum_{\substack{j_1=1\\j_1\neq j_2}}^{N_i} \sum_{\substack{j_2=1\\j_1\neq j_2}}^{N_i} \left[\alpha(T_{ij_1})\alpha(T_{ij_2}) K\left(\frac{T_{ij_1}-s}{h}\alpha(T_{ij_1}), \frac{T_{ij_2}-t}{h}\alpha(T_{ij_2})\right) Z(T_{ij_1}, T_{ij_2}) -\beta_0 - \beta_{11}(s-T_{ij_1}) - \beta_{12}(t-T_{ij_2}) \right]^2 \to \min$$

Known issues:

- symmetry of $\hat{c}(s, t)$ (OK for symmetric kernels)
- positive definiteness of $\hat{c}(s, t)$ (particularly depends on h)
- optimal $\alpha(\cdot)$
- optimal h

Motor Oil Data

The dataset contains amount of Fe particles depending on operating time and a number of oil changes. Data were collected 2006 – 2016 from 29 heavy-duty army vehicles.

- Load the variable df.motor from the motoroil.RData file and plot it (see Figure 1).
- Use functions from the file functionsM7777.R to fill the data (see Figure 2).
- Try to neglect the number of oil changes and put all groups together (see Figure 3).
- Fill the data using one of mentioned methods (see Figure 4).
- Do the same with using the FPCA package and compare results (see Figures 5, 6).
- (optional) Is the number of oil changes negligible? Conduct the fANOVA analysis. Is it correct to do it?

Motor Oil Data

Figure 1.

Jan Koláček (SCI MUNI)

M7777 Applied FDA

Motor Oil Data - filled

Figure 2.

Jan Koláček (SCI MUNI)

Motor Oil Data

Motor Oil Data - filled

functionsM777.R

Figure 5.

FDAPACE

Figure 6.