M7777 Applied Functional Data Analysis

5. From Data to Functions — Constrained
Functions

Jan Koldtek (kolacek@math.muni.cz)

Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno
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Constrained Functions

Constrained Functions

There are some situations in which we want to include known restrictions
about x(t).

o x(t) is always positive

e x(t) is always increasing (or decreasing)

e x(t) is a density
Idea: Enforce these conditions by transforming x(t).

Jan Koldgek (SCI MUNI) M7777 Applied FDA Fall 2019 2/17



Constrained Function

Angular Acceleration for Handwrite Data
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We know that angular acceleration

2*(t) = [D°x(1)]* + [Dy (1))?

must be positive.
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Constrained Functions

Positive Smoothing of Angular Acceleration for Handwrite Data
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Constrained Functions

Positive Smoothing
e We want to ensure that X(t) > 0.
Set W(t) = ®*(t)c

Let us consider the transformation

x(t) = e,

e Now we need to minimize

Mz

2
PENSSE\(W (y,- - eW(tf)) + A / [LW(t)]?dt.

i=1
e This does not have an explicit formula.
e It is convex = there is only one minimum.

e Requires numerical optimization, but this is generally fast.
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Constrained Functions

Monotone Smoothing

Growth of baby’s tibia
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Growth process is increasing = the derivative should be positive!
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Constrained Functions

Monotone Smoothing
o We need X(t) always increasing, i.e. DX(t) > 0.
e Set again W(t) = ®*(t)c.
e Let us consider the transformation

t
Dx(t) = ") = x(t) = a + / e ds.

e We want to minimize
t. 2

N
PENSSE\(W Z P — o — / WEds | 4+ A / [LW (t)]%dt.

to

o Still convex problem, numerics work fairly quickly.
o LW(t) = D?W(t) suggests that any x(t) = o + €%t is smooth.
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Constrained Functions

Monotone Smoothing

Estimation with the constraint of monotonity
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Constrained Function

Density Estimation
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Constrained Functions

Density Estimation

e The function x(t) is a density = we need

2(t) > 0 and /)“((t)dt —1

Set again W(t) = ®*(t)c.

Let us consider the transformation

eW(t)
x(t) = —f W ds

But we observe only y1, ..., yn (correspond to ty,..., ty).

What would we to minimize?
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Constrained Functions

Penalized Likelihood
e Likelihood of W(t) is probability of seeing t1,...,ty if W is true.
e We maximize the likelihood function

N W, -N
L(W|t,...,tn) = Hx(t,-) = e":z1 () (/eW(S)dS) .
i=1

e Easier to work with log-likelihood
N
Wity oty) =Y W(t) - NIn/eW(s)ds.
i=1
e Minimize the penalized negative log-likelihood
N
PENLOGLIK\(W) == W(t,-)+NIn/eW(s)ds+)\/[LW(t)]2dt.
i=1
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Constrained Functions

Thinking about Smoothness

e What is an appropriate measure of smoothness for densities?
x(t) = Ce"(®)
e Compare to Normal density

f(t) = 1 e (t—=n)?/20%
2o

e Then W(t) = t? should be smooth = roughness penalty

LW(t) = D3W(t).
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Constrained Functions

Density Estimation for St. Johns Precipitation
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Used: B-spline basis of order 6 with 29 knots, log A = —2
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Problems to solve

@ Absorbance Data

o |oad the variable absorb from the absorb.RData file and plot it.

e Fit the data using a B-spline basis and a curvature penalty. Try some
values of ), do not consider any constraint.

o Consider the monotonicity constraint and fit the data using the same
basis. Try some values of A and observe how the “optimal” value
changes with the monotonicity constraint. Plot both final fits (see
Figure 1).

® Turany Precipitation Data

e Load the variable df . turany.monthly from the turany.RData file.
The dataset contains monthly precipitation amounts in Brno—Tu¥any in
years 2016 — 2018.

e Fit the temperature density with Fourier bases and the third derivative
rougness penalties at a number of values of A (see Figure 2 for
A = 100).

e Use the generic function density to get the density estimate, plot it
(see Figure 3) and compare with the previous step result.

© (optional) Program the CV procedure for monotone smoothing.
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Problems to solve

Classic Monotone
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Problems to solve

Turany
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Problems to solve

Turany
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