M7777 Applied Functional Data Analysis
 5. From Data to Functions - Constrained Functions

Jan Koláček (kolacek@math.muni.cz)

Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno

Constrained Functions

Constrained Functions

There are some situations in which we want to include known restrictions about $x(t)$.

- $x(t)$ is always positive
- $x(t)$ is always increasing (or decreasing)
- $x(t)$ is a density

Idea: Enforce these conditions by transforming $x(t)$.

Constrained Functions

Angular Acceleration for Handwrite Data

We know that angular acceleration

$$
a^{2}(t)=\left[D^{2} x(t)\right]^{2}+\left[D^{2} y(t)\right]^{2}
$$

must be positive.

Constrained Functions

Positive Smoothing of Angular Acceleration for Handwrite Data

Constrained Functions

Positive Smoothing

- We want to ensure that $\hat{x}(t)>0$.
- Set $W(t)=\boldsymbol{\Phi}^{*}(t) \mathbf{c}$
- Let us consider the transformation

$$
x(t)=e^{W(t)}
$$

- Now we need to minimize

$$
\operatorname{PENSSE}_{\lambda}(W)=\sum_{i=1}^{N}\left(y_{i}-e^{W\left(t_{i}\right)}\right)^{2}+\lambda \int[\operatorname{LW}(t)]^{2} d t
$$

- This does not have an explicit formula.
- It is convex \Rightarrow there is only one minimum.
- Requires numerical optimization, but this is generally fast.

Constrained Functions

Monotone Smoothing

Growth of baby's tibia

Growth process is increasing \Rightarrow the derivative should be positive!

Constrained Functions

Monotone Smoothing

- We need $\hat{x}(t)$ always increasing, i.e. $D \hat{x}(t)>0$.
- Set again $W(t)=\boldsymbol{\Phi}^{*}(t) \mathbf{c}$.
- Let us consider the transformation

$$
D x(t)=e^{W(t)} \Rightarrow x(t)=\alpha+\int_{t_{0}}^{t} e^{W(s)} d s
$$

- We want to minimize
$\operatorname{PENSSE}_{\lambda}(W)=\sum_{i=1}^{N}\left(y_{i}-\alpha-\int_{t_{0}}^{t_{i}} e^{W(s)} d s\right)^{2}+\lambda \int[L W(t)]^{2} d t$.
- Still convex problem, numerics work fairly quickly.
- $L W(t)=D^{2} W(t)$ suggests that any $x(t)=\alpha+e^{\beta t}$ is smooth.

Constrained Functions

Monotone Smoothing

Estimation with the constraint of monotonity

Constrained Functions

Density Estimation

Constrained Functions

Density Estimation

- The function $x(t)$ is a density \Rightarrow we need

$$
\hat{x}(t)>0 \text { and } \int \hat{x}(t) d t=1
$$

- Set again $W(t)=\boldsymbol{\Phi}^{*}(t) \mathbf{c}$.
- Let us consider the transformation

$$
x(t)=\frac{e^{W(t)}}{\int e^{W(s)} d s}
$$

- But we observe only y_{1}, \ldots, y_{N} (correspond to t_{1}, \ldots, t_{N}).
- What would we to minimize?

Constrained Functions

Penalized Likelihood

- Likelihood of $W(t)$ is probability of seeing t_{1}, \ldots, t_{N} if W is true.
- We maximize the likelihood function

$$
L\left(W \mid t_{1}, \ldots, t_{N}\right)=\prod_{i=1}^{N} x\left(t_{i}\right)=e^{\sum_{i=1}^{N} W\left(t_{i}\right)}\left(\int e^{W(s)} d s\right)^{-N}
$$

- Easier to work with log-likelihood

$$
I\left(W \mid t_{1}, \ldots, t_{N}\right)=\sum_{i=1}^{N} W\left(t_{i}\right)-N \ln \int e^{W(s)} d s
$$

- Minimize the penalized negative log-likelihood
$\operatorname{PENLOGLIK}_{\lambda}(W)=-\sum_{i=1}^{N} W\left(t_{i}\right)+N \ln \int e^{W(s)} d s+\lambda \int[L W(t)]^{2} d t$

Constrained Functions

Thinking about Smoothness

- What is an appropriate measure of smoothness for densities?

$$
x(t)=C e^{W(t)}
$$

- Compare to Normal density

$$
f(t)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(t-\mu)^{2} / 2 \sigma^{2}}
$$

- Then $W(t)=t^{2}$ should be smooth \Rightarrow roughness penalty

$$
L W(t)=D^{3} W(t)
$$

Constrained Functions

Density Estimation for St. Johns Precipitation

Used: B-spline basis of order 6 with 29 knots, $\log \lambda=-2$

Problems to solve

(1) Absorbance Data

- Load the variable absorb from the absorb. RData file and plot it.
- Fit the data using a B-spline basis and a curvature penalty. Try some values of λ, do not consider any constraint.
- Consider the monotonicity constraint and fit the data using the same basis. Try some values of λ and observe how the "optimal" value changes with the monotonicity constraint. Plot both final fits (see Figure 1).
(2) Tuřany Precipitation Data
- Load the variable df.turany.monthly from the turany. RData file. The dataset contains monthly precipitation amounts in Brno-Tuřany in years 2016-2018.
- Fit the temperature density with Fourier bases and the third derivative rougness penalties at a number of values of λ (see Figure 2 for $\lambda=100$).
- Use the generic function density to get the density estimate, plot it (see Figure 3) and compare with the previous step result.
(3) (optional) Program the CV procedure for monotone smoothing.

Problems to solve

Figure 1.

Problems to solve

Figure 2.

Problems to solve

Figure 3.

