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Functional Linear Regression

Three different scenarios

• Scalar-on-function regression: functional covariate, scalar response

• Functional response models
• scalar covariate
• functional covariate

We will deal with each in turn.
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Scalar-on-function regression

Example: Log total Precipitation ∼ Temperature curve

We want to relate annual precipitation to the shape of the temperature
profile.
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Scalar-on-function regression

A First Idea

• We observe yi , xi (t)

• Choose t1, . . . , tk

• Then we set

yi = α +
k∑

j=1

βjxi (tj) + εi

= α + xiβ + ε

• And do linear regression.

But how many t1, . . . , tk and which ones? (it should be k << n !!!)
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Scalar-on-function regression

In the Limit. . .

If we let t1, . . . , tk get increasingly dense (i.e. k →∞)

yi = α +
k∑

j=1

βjxi (tj) + εi

becomes

yi = α +

∫
β(t)xi (t)dt + εi (1)

Minimize squared error:

β(t) = arg min
n∑

i=1

(
yi − α−

∫
β(t)xi (t)dt

)2

How to solve it? (3 approaches)
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Scalar-on-function regression

1. Estimation through a basis expansion

Expand the function β using basis functions

β(t) =
K∑
j=1

cjΦj(t).

Thus ∫
β(t)xi (t)dt =

K∑
j=1

cj

∫
Φj(t)xi (t)dt︸ ︷︷ ︸

zij

= Zc

and model (1) reduces to

y = α + Zc + ε.

It is a classical linear regression model ⇒ ĉ.
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Scalar-on-function regression

The resulting estimate

β̂(t) =
K∑
j=1

ĉjΦj(t).

Disadvantages

• Assumption of β(t) as a linear combination of basis functions Φ(t)

• Estimate β̂(t) depends on the shape of the basis functions and on
their number K

Confidence intervals
Assuming normality of errors, 95% confidence interval for β(t):

β̂(t)± 1.96
K∑
j=1

σ̂jΦj(t),

where σ̂j is j-th diagonal entry of σ̂ε (X′X)−1; X = [1n|Z], σ̂ε is the
sample variance of y − ŷ.
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Scalar-on-function regression

The estimate of β(t)
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Scalar-on-function regression

2. Estimation with a roughness penalty

Main idea

• The same expansion for β(t), but K is taken to be some large value
(often K is the number of ti ) ⇒ no longer sensitivity to K

• The control of smoothness is shifted from K to the smoothing
parameter λ and a differential operator L (a penalty term)

Pλ(α, β) =
n∑

i=1

(
yi − α−

∫
β(t)xi (t)dt

)2

+ λ

∫
[(Lβ)(t)]2dt.

Thus

Pλ(α, β) =
n∑

i=1

yi − α−
K∑
j=1

cjzij

2

+ λ

∫  K∑
j=1

cj(LΦj)(t)

2

dt.

The optimal λ is selected by cross-validation.
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Scalar-on-function regression

Cross-validation scores
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Scalar-on-function regression

The estimate of β(t)
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Scalar-on-function regression

3. Regression on functional principal components
Let us consider an approximation x̂i (t) of xi (t) by K principal components

x̂i (t) = x̄(t) +
K∑
j=1

cijξj(t),

where ξj(t) is the j-th principal component, cij =
∫
ξj(t)[xi (t)− x̄(t)]dt is

its score. By plugging it in the model (1), it reduces to

yi = α +

∫
β(t)

x̄(t) +
K∑
j=1

cijξj(t)

 dt + εi

= β0 +
K∑
j=1

cijβj + εi ,

where β0 = α +
∫
β(t)x̄(t)dt, βj =

∫
β(t)ξj(t)dt.
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Scalar-on-function regression

It is a “classic” regression model

y = Ξβ + ε

with β = (β0, β1, . . . , βK )′ and Ξ = [1n|C], C is the score matrix.
Denoting the estimates thus obtained by β̂0, β̂1, . . . , β̂K the estimates of
the parameters in (1) are

β̂(t) =
K∑
j=1

β̂jξj(t), α̂ = β̂0 −
K∑
j=1

β̂j

∫
ξj(t)x̄(t)dt.

• first K components explain 85 or 90 percent of cumulative variance

Confidence intervals

Varβ̂(t) =
K∑
j=1

Var(β̂j)ξ
2
j (t)⇒ CI:β̂(t)± 1.96

 K∑
j=1

Var(β̂j)ξ
2
j (t)

 1
2
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Scalar-on-function regression

The estimate of β(t)
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Scalar-on-function regression

Comparison of estimates of β(t)
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Scalar-on-function regression

Assessing the quality
Set

SSE0 =
n∑

i=1

(yi − ȳ)2, SSE1 =
n∑

i=1

(yi − ŷi )
2

• Squared Multiple Correlation

RSQ =
SSE0 − SSE1

SSE0

• F -ratio

F =
SSE0−SSE1

k−1
SSE1
n−k

,

where k . . . degrees of freedom (usually No. of parameters)

• Plotting ŷ vs. y

• Cross-validation
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Scalar-on-function regression

Assessing the quality

Model degrees of freedom RSQ F -ratio

Basis expansion 6 0.796 22.58

Roughness penalty 4.6 0.754 25.42

Functional PCA 5 0.757 23.33
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Scalar-on-function regression

Comparison of fits ŷ
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Scalar-on-function regression

Cross-validation

• Divide y to 2 groups, training and testing data y = [ỹ , y∗]

• Construct model based on ỹ

• Use the model to predict ŷ∗

• Compare ŷ∗ against y∗
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Scalar-on-function regression

4. Nonparametric regression
The model (1)

yi = α +

∫
β(t)xi (t)dt + εi

with no parameters assumption becomes to a general model

yi = m (xi (t)) + εi ,

where m : L2 → R is a functional that must be estimated.
Kernel smoothing

m̂(x) =
n∑

i=1

wi (x)yi , wi (x) =
K
(
h−1d(x , xi )

)∑n
j=1 K (h−1d(x , xj))

,

where h is a smoothing parameter, K is a kernel function and d(f , g)
is a measure of the distance between functions f and g .
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Scalar-on-function regression

Comparison of fits ŷ
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Problems to solve

1 Medfly Data
• Load the variable medfly from the medfly.RData file.
• Perform a functional linear regression to predict the total lifespan of

the fly from their egg laying. Choose a smoothing parameter by cross
validation, and plot the coefficient function along with confidence
intervals (see Figure 1).

• Plot the estimated values of lifespan against the measured values (see
Figure 2). Calculate the R2 for your regression.

• Try a linear regression of lifespan on the principal component scores
from your analysis (the previous lesson). What is the R2 for this
model? Does lm find that the model is significant? Reconstruct and
plot the coefficient function for this model along with confidence
intervals (see Figure 3).

• Conduct the nonparametric regression. How does it compare to the
model obtained through functional linear regression and to the model
obtained through PCA? Plot estimated values of lifespan against the
measured values for all three cases (see Figure 4).
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Problems to solve
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Figure 1.
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Problems to solve
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Problems to solve
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Jan Koláček (SCI MUNI) M7777 Applied FDA Fall 2019 25 / 26



Problems to solve
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Jan Koláček (SCI MUNI) M7777 Applied FDA Fall 2019 26 / 26


	Functional Linear Regression

