M7777 Applied Functional Data Analysis 8. Functional Data Simulation

Jan Koláček (kolacek@math.muni.cz)

Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno

Functional Data Simulation

1. Wiener process (limit of a Random Walk)

$$
x_{i}\left(t_{k}\right)=S_{k}=\frac{1}{\sqrt{N}} \sum_{j=1}^{k} U_{j}, \quad \text { iid } U_{j} \sim N(0,1), j=1, \ldots, N
$$

Combinations with Wiener process

$$
x_{i}\left(t_{k}\right)=m\left(t_{k}\right)+S_{k}
$$

Functional Data Simulation

2. Regression model

- Simulate $N \times M$ measurements

$$
x_{i}\left(t_{k}\right)=m\left(t_{k}\right)+\varepsilon_{i k}, \quad \text { iid } \varepsilon_{i k} \sim N\left(0, \sigma^{2}\right)
$$

$m(t) \ldots$ any regression function, $i=1, \ldots, N, k=1, \ldots, M$

- Smooth the data by FDA $\Rightarrow x_{i}(t), i=1, \ldots, N$

Functional Data Simulation

3. Basis expansion

$$
x_{i}\left(t_{k}\right)=\sum_{j=1}^{K} C_{i j} \Phi_{j}\left(t_{k}\right)
$$

- $\boldsymbol{\Phi}^{*}(t)=\left(\Phi_{1}(t), \ldots, \Phi_{K}(t)\right) \ldots$ a given basis system
- $C_{i j} \ldots$ iid random basis coefficients for i-th curve, $j=1, \ldots, K$

Functional Data Simulation

4. Gaussian process

Let us consider a regression model

$$
x_{i}\left(t_{k}\right)=m\left(t_{k}\right)+\varepsilon_{i k}
$$

with a covariance function $c(r, s)$, i.e. $\operatorname{Cov}\left(\varepsilon_{i r}, \varepsilon_{i s}\right)=c\left(t_{r}, t_{s}\right)$, usually

$$
c(u, v)=\sigma^{2} \exp \left(-\frac{1}{2 /^{2}}(u-v)^{2}\right)
$$

Set
$\mathbf{m}=\left(m\left(t_{1}\right), \ldots, m\left(t_{M}\right)\right)^{\prime}, \boldsymbol{\Sigma}=\left(c\left(t_{i}, t_{j}\right)\right)_{i, j=1}^{M}, \mathbf{x}_{i}=\left(x_{i}\left(t_{1}\right), \ldots, x_{i}\left(t_{M}\right)\right)^{\prime}$
Thus $\mathbf{x}_{i} \sim N_{M}(\mathbf{m}, \boldsymbol{\Sigma})$ and $x_{i}(t)=\lim _{M \rightarrow \infty} \mathbf{x}_{i}$.

Gaussian process

Functional Data Simulation

5. Random Gaussian process

Let be given $\left(t_{1}^{*}, y_{1}^{*}\right) \ldots,\left(t_{L}^{*}, y_{L}^{*}\right), L<M$, and suppose

$$
x_{i}\left(t_{k}^{*}\right)=y_{k}^{*}+\varepsilon_{i k}^{*}, \varepsilon_{i}^{*} \sim N_{L}\left(\mathbf{0}, \sigma_{*}^{2} \mathbf{I}_{L}\right) .
$$

Then

$$
\mathbf{x}_{i} \mid \mathbf{y}^{*} \sim N_{M}\left(\mathbf{m}^{*}, \boldsymbol{\Sigma}^{*}\right)
$$

with

$$
\begin{aligned}
& \mathbf{m}^{*}=\boldsymbol{\Sigma}_{\mathbf{t t}^{*}}\left(\boldsymbol{\Sigma}_{\mathbf{t}^{*} \mathbf{t}^{*}}+\sigma_{*}^{2} \mathbf{I}_{L}\right)^{-1} \mathbf{y}^{*} \\
& \boldsymbol{\Sigma}^{*}=\boldsymbol{\Sigma}_{\mathbf{t t}}-\boldsymbol{\Sigma}_{\mathbf{t t}^{*}}\left(\boldsymbol{\Sigma}_{\mathbf{t}^{*} \mathbf{t}^{*}}+\sigma_{*}^{2} \mathbf{I}_{L}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{t}^{*} \mathbf{t}}, \text { where } \boldsymbol{\Sigma}_{\mathbf{a b}}=\operatorname{Cov}(\mathbf{a}, \mathbf{b})
\end{aligned}
$$

Functional Data Simulation

Regression Simulation

(1) Generate y_{i} with known $\alpha, \beta(t), x_{i}(t)$ and $\varepsilon_{i}, i=1, \ldots, 30$
(2) Get estimates $\hat{\beta}(t), \hat{y}$ by considered methods
a) Estimation through a basis expansion $\ldots \hat{\beta}_{B E}(t), \hat{y}_{B E}$
b) Estimation with a roughness penalty $\ldots \hat{\beta}_{R P}(t), \hat{y}_{R P}$
c) Regression on functional principal components $\ldots \hat{\beta}_{P C}(t), \hat{y}_{P C}$
d) Nonparametric regression $\ldots \hat{\beta}_{N R}(t), \hat{y}_{N R}$
(3) Compare $\hat{\beta}_{B E}, \hat{\beta}_{R P}, \hat{\beta}_{P C}, \hat{\beta}_{N R}$ with known β
(4) Compare estimates $\hat{y}_{B E}, \hat{y}_{R P}, \hat{y}_{P C}, \hat{y}_{N R}$ with known model fits.

Functional Data Simulation

Regression Simulation 1

Let $\left(t_{1}, \ldots, t_{M}\right)=(1,2, \ldots 365)$, we will simulate 30 regression curves $x_{i}(t)$ as the Gaussian process with

$$
m(t)=\sin (t / 365), \quad c(u, v)=0.01 \exp \left(-\frac{1}{1000}(u-v)^{2}\right)
$$

The regression model takes the form

$$
y_{i}=-10+\int_{1}^{365} \beta(t) x_{i}(t) d t+\varepsilon_{i}
$$

with $\beta(t)=1+2 t / 365-(t / 365)^{2}$ and $\varepsilon_{i} \sim N(0,5)$.

Functional Data Simulation

Simulated Data

y
time [deys]

Functional Data Simulation

Comparison of β

Functional Data Simulation

Comparison of fits

Functional Data Simulation

Regression Simulation 2

Let $\left(t_{1}, \ldots, t_{M}\right)=(0,0.01, \ldots 1)$, we will simulate 30 regression curves $x_{i}(t)$ as the Gaussian process with

$$
m(t)=\exp (t / 2 \pi), \quad c(u, v)=0.5 \exp \left(-10(u-v)^{2}\right)
$$

The regression model takes the form

$$
y_{i}=5+\int_{0}^{1} \beta(t) x_{i}(t) d t+\varepsilon_{i}
$$

with $\beta(t)=\sin (2 \pi t)$ and $\varepsilon_{i} \sim N(0,0.1)$.

Functional Data Simulation

Simulated Data

Functional Data Simulation

Comparison of β

Functional Data Simulation

Comparison of fits

Problems to solve

(1) Conduct the following simulation (Kokoszka and Reimherr, 2017).

- Generate 1000 random functions

$$
X\left(t_{j}\right)=Z t_{j}+U+\eta\left(t_{j}\right)+\epsilon\left(t_{j}\right),
$$

where t_{j} are 101 equidistantly distributed points on $[0,1]$, $\eta\left(t_{j}\right) \sim N(0,1), Z \sim N\left(1,0.2^{2}\right), U \sim \operatorname{UNIF}(0,5)$ and the random curves $\epsilon(t)$ will be generated as

$$
\epsilon(t)=\sum_{k=1}^{10} \frac{1}{k}\left\{Z_{1 k} \sin (2 \pi t k)+Z_{2 k} \cos (2 \pi t k)\right\}
$$

with independent standard normal $Z_{1 k}, Z_{2 k}$.

- Consider a regression model of the form

$$
y_{i}=0.01 \int_{0}^{1} \beta(t) X_{i}(t) d t+\varepsilon_{i}
$$

with $\beta(t)=-f_{1}(t)+3 f_{2}(t)+f_{3}(t)$ and $\varepsilon_{i} \sim N(0,0.4)$, where f_{1}, f_{2}, f_{3} are normal densities $N\left(0.2,0.03^{2}\right), N\left(0.5,0.04^{2}\right), N\left(0.75,0.05^{2}\right)$, respectively.

Problems to solve

- Try all regression approaches studied in the previous lesson, i.e.
- estimation through a basis expansion,
- estimation with a roughness penalty and
- regression on FPCA.

Plot the estimates $\hat{\beta}(t)$ and compare it with the original $\beta(t)$ (see Figure 1).

- Conduct the nonparametric regression. Plot estimated values \hat{y}_{i} against the simulated y_{i} for all cases (see Figure 2).

Problems to solve

Figure 1.

Problems to solve

Figure 2.

