M7777 Applied Functional Data Analysis 8. Functional Data Simulation

Jan Koláček (kolacek@math.muni.cz)

Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno

1. Wiener process (limit of a Random Walk)

$$x_i(t_k) = S_k = \frac{1}{\sqrt{N}} \sum_{j=1}^k U_j,$$
 iid $U_j \sim N(0,1), \ j = 1, ..., N$

Combinations with Wiener process

$$x_i(t_k) = m(t_k) + S_k$$

Jan Koláček (SCI MUNI)

M7777 Applied FDA

2. Regression model

• Simulate $N \times M$ measurements

$$x_i(t_k) = m(t_k) + \varepsilon_{ik}, \quad \text{iid } \varepsilon_{ik} \sim N(0, \sigma^2)$$

m(t)...any regression function, i = 1, ..., N, k = 1, ..., M

• Smooth the data by FDA $\Rightarrow x_i(t), i = 1, \dots, N$

3. Basis expansion

$$x_i(t_k) = \sum_{j=1}^{K} C_{ij} \Phi_j(t_k).$$

- $\Phi^*(t) = (\Phi_1(t), \dots, \Phi_K(t)) \dots$ a given basis system
- C_{ij} ... iid random basis coefficients for *i*-th curve, j = 1, ..., K

Jan Koláček (SCI MUNI)

4. Gaussian process

Let us consider a regression model

$$x_i(t_k) = m(t_k) + \varepsilon_{ik}$$

with a covariance function c(r,s), i.e. $Cov(\varepsilon_{ir}, \varepsilon_{is}) = c(t_r, t_s)$, usually

$$c(u,v) = \sigma^2 \exp\left(-\frac{1}{2l^2}(u-v)^2\right).$$

Fall 2019

5 / 19

Set

 $\mathbf{m} = (m(t_1), \dots, m(t_M))', \mathbf{\Sigma} = (c(t_i, t_j))_{i,j=1}^M, \mathbf{x}_i = (x_i(t_1), \dots, x_i(t_M))'$ Thus $\mathbf{x}_i \sim N_M(\mathbf{m}, \mathbf{\Sigma})$ and $x_i(t) = \lim_{M \to \infty} \mathbf{x}_i$.

5. Random Gaussian process Let be given $(t_1^*, y_1^*) \dots, (t_L^*, y_L^*), L < M$, and suppose $x_i(t_k^*) = y_k^* + \varepsilon_{ik}^*, \ \varepsilon_i^* \sim N_L(\mathbf{0}, \sigma_*^2 \mathbf{I}_L).$

Then

$$\mathbf{x}_i | \mathbf{y}^* \sim N_M(\mathbf{m}^*, \mathbf{\Sigma}^*)$$

with

$$\begin{split} \mathbf{m}^{*} &= \boldsymbol{\Sigma}_{\mathbf{t}\mathbf{t}^{*}} \left(\boldsymbol{\Sigma}_{\mathbf{t}^{*}\mathbf{t}^{*}} + \sigma_{*}^{2}\mathbf{I}_{\boldsymbol{L}} \right)^{-1} \mathbf{y}^{*}, \\ \boldsymbol{\Sigma}^{*} &= \boldsymbol{\Sigma}_{\mathbf{t}\mathbf{t}} - \boldsymbol{\Sigma}_{\mathbf{t}\mathbf{t}^{*}} \left(\boldsymbol{\Sigma}_{\mathbf{t}^{*}\mathbf{t}^{*}} + \sigma_{*}^{2}\mathbf{I}_{\boldsymbol{L}} \right)^{-1} \boldsymbol{\Sigma}_{\mathbf{t}^{*}\mathbf{t}}, \text{ where } \boldsymbol{\Sigma}_{\mathbf{a}\mathbf{b}} = \mathsf{Cov}(\mathbf{a}, \mathbf{b}). \end{split}$$

Jan Koláček (SCI MUNI)

M7777 Applied FDA

Regression Simulation

- **1** Generate y_i with known $\alpha, \beta(t), x_i(t)$ and $\varepsilon_i, i = 1, ..., 30$
- **2** Get estimates $\hat{\beta}(t), \hat{y}$ by considered methods
 - a) Estimation through a basis expansion $\dots \hat{\beta}_{BE}(t), \hat{y}_{BE}$
 - **b)** Estimation with a roughness penalty $\dots \hat{\beta}_{RP}(t), \hat{y}_{RP}$
 - c) Regression on functional principal components ... $\hat{\beta}_{PC}(t), \hat{y}_{PC}$
 - d) Nonparametric regression $\dots \hat{\beta}_{NR}(t), \hat{y}_{NR}$
- **3** Compare $\hat{\beta}_{BE}, \hat{\beta}_{RP}, \hat{\beta}_{PC}, \hat{\beta}_{NR}$ with known β
- **4** Compare estimates $\hat{y}_{BE}, \hat{y}_{RP}, \hat{y}_{PC}, \hat{y}_{NR}$ with known model fits.

Regression Simulation 1

Let $(t_1, \ldots, t_M) = (1, 2, \ldots 365)$, we will simulate 30 regression curves $x_i(t)$ as the Gaussian process with

$$m(t) = \sin(t/365), \quad c(u, v) = 0.01 \exp\left(-\frac{1}{1\,000}(u-v)^2\right)$$

The regression model takes the form

$$y_i = -10 + \int\limits_{1}^{365} eta(t) x_i(t) dt + arepsilon_i$$

with $\beta(t) = 1 + 2t/365 - (t/365)^2$ and $\varepsilon_i \sim N(0,5)$.

Simulated Data

Comparison of β

Comparison of fits

Regression Simulation 2

Let $(t_1, \ldots, t_M) = (0, 0.01, \ldots, 1)$, we will simulate 30 regression curves $x_i(t)$ as the Gaussian process with

$$m(t) = \exp(t/2\pi), \quad c(u, v) = 0.5 \exp(-10(u-v)^2).$$

The regression model takes the form

$$y_i = 5 + \int_0^1 \beta(t) x_i(t) dt + \varepsilon_i$$

with $\beta(t) = \sin(2\pi t)$ and $\varepsilon_i \sim N(0, 0.1)$.

Simulated Data

Comparison of β

Comparison of fits

Problems to solve

Conduct the following simulation (Kokoszka and Reimherr, 2017).
Generate 1 000 random functions

$$X(t_j) = Zt_j + U + \eta(t_j) + \epsilon(t_j),$$

where t_j are 101 equidistantly distributed points on [0, 1], $\eta(t_j) \sim N(0, 1), Z \sim N(1, 0.2^2), U \sim UNIF(0, 5)$ and the random curves $\epsilon(t)$ will be generated as

$$\epsilon(t) = \sum_{k=1}^{10} \frac{1}{k} \{ Z_{1k} \sin(2\pi tk) + Z_{2k} \cos(2\pi tk) \}$$

with independent standard normal Z_{1k}, Z_{2k} .

• Consider a regression model of the form

$$y_i = 0.01 \int\limits_0^1 eta(t) X_i(t) dt + arepsilon_i$$

with $\beta(t) = -f_1(t) + 3f_2(t) + f_3(t)$ and $\varepsilon_i \sim N(0, 0.4)$, where f_1, f_2, f_3 are normal densities $N(0.2, 0.03^2)$, $N(0.5, 0.04^2)$, $N(0.75, 0.05^2)$, respectively.

Jan Koláček (SCI MUNI)

• Try all regression approaches studied in the previous lesson, i.e.

- estimation through a basis expansion,
- estimation with a roughness penalty and
- regression on FPCA.

Plot the estimates $\hat{\beta}(t)$ and compare it with the original $\beta(t)$ (see Figure 1).

• Conduct the nonparametric regression. Plot estimated values \hat{y}_i against the simulated y_i for all cases (see Figure 2).

Problems to solve

Figure 1.

Problems to solve

Jan Koláček (SCI MUNI)

Fall 2019 19 / 19