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Note: This tutorial originates in 20171.
De�ne the n-th homotopy group of the space X with the base point x0 as the group of

homotopy classes of the continuous maps (In, ∂In)→ (X, x0) with the operation given by
the prescription:

(f + g)(t1, . . . , tn) =

{
f(2t1, t2, . . . , tn) 0 ≤ t1 ≤ 1

2
,

g(2t1 − 1, t2, . . . , tn)
1
2
≤ t1 ≤ 1.

Denote it πn(X, x0). Note that a monoid structure induced by concatenation of maps
with respect to other components as the �rst one coincides with above prescription by the
Eckmann-Hilton argument. To see that f + g is a continuous map again we refer to the
well-known pasting lemma.

Exercise 1. Show the operation on πn(X, x0) is associative.

Solution. We want to show (f + g) + k ∼ f + (g + k). We will �nd prescription for the
homotopy by the following diagram:

f g h

f g h

In the following notation2, understand f(t1) as f(t1, t2, . . . , tn) for all t2, . . . , tn ∈ I.

h(s, t1) =


f( 4

1+s
t1) (s, t1) ∈ I (t1 ∈ [0, 1

4
+ s1

4
], s ∈ [0, 1])

g(4t1 − (1 + s)) (s, t1) ∈ II (t1 ∈ [1
4
+ s1

4
, 1
2
+ s1

4
], s ∈ [0, 1])

k( 4
2−st1 −

2+s
2−s) (s, t1) ∈ III (t1 ∈ [1

2
+ s1

4
, 1], s ∈ [0, 1])

Exercise 2. Show that the element given by prescription

(−f)(t1, . . . , tn) = f(1− t1, t2, . . . , tn)

is really the inverse element of f .

Solution. We want to show f + (−f) ∼ const. The constant will be (function given by)
the point f(2t1) = f(0). Again let us draw a diagram (the square (its boundary) in the
middle sign the same value; the wavy line sign one value too).

1see https://is.muni.cz/el/sci/jaro2019/M8130/um/68045051/
2and some other following notations
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h(s, t1) =


f(2t1) (s, t1) ∈ I

f(1−s
2
) = (−f)(1+s

2
) (s, t1) ∈ II

(−f)(1− 2t1) = f(2t1) (s, t1) ∈ III,

s

t1

where II = {(s, t1) | s ∈ [0, 1], t1 ∈ [1−s
2
, 1+s

2
]).

Remark. One can see, that proving by pictures is much more pleasant.

There is a long exact sequence:

· · · → πn+1(X,A, x0)
∂−−→ πn(A, x0)

i∗−−→ πn(X, x0)
j∗−−→ πn(X,A, x0)

∂−−→ πn−1(A, x0)→ . . .

Exercise 3. Show the exactness of this sequence in πn(X,A, x0) and πn(A, x0).

Solution. At �rst we will show the exactness in πn(X,A, x0).
Let us show the inclusion �im j∗ ⊆ ker ∂ �. Take an arbitrary f ∈ πn(X, x0), thus

f : (In, ∂In)→ (X, x0). From de�nition j∗(f) = j ◦ f : (In, ∂In, Jn−1)→ (X,A, x0), where
Jn−1 = In − In−1, and ∂([f ]) = [f |In−1 ] = const, since f is constant on whole ∂In ⊇ In−1.

�im j∗ ⊇ ker ∂ �: Take an arbitrary g ∈ ker ∂ ⊆ πn(X,A, x0), thus g : (I
n, ∂In, Jn−1) →

(X,A, x0). Since g ∈ ker ∂, there is the homotopy h : (In−1, ∂In−1) × I −→ (A, x0) such
that h(x, 0) = g|In−1(x) and h(x, 1) = const. Because h(x, t) ∈ A and h(x′, t) = x0 for all
x ∈ In−1, x ∈ ∂In−1 and t ∈ [0, 1], we can take f ∈ πn(X, x0) de�ned by

f(x, t) =

{
g(x, 2t) for t ∈ [0, 1

2
]

h(x, 2t− 1) for t ∈ [1
2
, 1].

It is not hard to prove that j∗(f) is homotopic to g, see picture below.

x0

A

g

x0

A

g

h

x0

A

g

h

homotopic

Another approach to showing this inclusion is to view homotopy groups πn(X,A, x0)
as the homotopy classes [(Dn, Sn−1, s0), (X,A, x0)] and the connecting homomorphism ∂
as the restriction |Sn−1 . Then we have the following commutative diagram

Dn × {0} ∪ Sn−1 × I

��

g∪h // X

Dn × I

H

66
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The homotopy H exists by HEP of the pair (Dn, Sn−1). Then we can take [H(−, 1)] ∈
πn(X, x0) and j∗([H(−, 1)]) = [g].

Now, let us show the exactness in πn(A, x0).
�im ∂ ⊇ ker i∗ � Let f ∈ ker i∗ ⊆ πn(A, x0) be an arbitrary. Because i∗f ∼ const, we

have homotopy h : (In, ∂In) × I → (X, x0) such that h(x, 0) = f(x) and h(x, 1) = x0. It
holds h ∈ πn+1(X,A, x0), since h(x, 0) ∈ A, h(x, 1) = x0 and h(x′, t) = x0 for all x ∈ In
and x′ ∈ ∂In.

�im ∂ ⊆ ker i∗ � Let h ∈ πn+1(X,A, x0) be an arbitrary. Denote h|In = f . Then h gives
the homotopy i∗f ∼ const in (X, x0), since h(x, 0) = f(x), h(x, 1) = x0 and h(x′, t) = x0
for all x′ ∈ ∂In and x ∈ In.

A map p : E → B is called a �bration if it has the homotopy lifting property for all

(Dn, ∅):
Dn × {0} //

��

E

p

��
Dn × I

::

// B

If p is a �bration then it has the homotopy lifting property also for all pairs (X,A) of

CW-complexes:

X × {0} ∪ A× I //

��

E

p

��
X × I

77

// B

Recall that p : E → B is a �bre bundle with �bre F if there are open subsets Uα such

that B =
⋃
α Uα and the following diagram commutes for all Uα:

Uα × F homeo. //

pr1
''

p−1(Uα)

p

��
Uα

Typical examples of �bre bundles with �bre S1 over I are a trivial bundle or Mobius band3.

Exercise 4. Show that every �bre bundle is a �bration.

Solution. At �rst consider a trivial �bre bundle E = B×F . Take an arbitrary commutative
diagram of the form:

Dn × {0} f //

��

B × F
prB
��

Dn × I h // B

3http://rin.io/intro-to-bundles/
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Then h(−, 0) = f and we can de�ne H : Dn×I → B×F by H(x, t) =
(
h(x, t), prF (f(x))

)
.

One can see that the diagram commutes with H too.
Now, let p : E → B be an arbitrary �bre bundle with �bre F and B =

⋃
α Uα. We can

take In instead of Dn and consider a diagram:

In × {0} f //

��

E

p

��
In × I h // B

Because In is compact, we can divide In × I to �nitely many subcubes Ci × Ik where
Ii = [jk, jk+1] such that h(Ci × Ik) ⊆ Uα for some α. This is possible due to Lebesgue's

number lemma. Since Uα×F → Uα makes a trivial bundle, we can use the same approach
as above for each subcube. Since we know H|Ci×{0}, we can �nd the lift H for all cubes
in the �rst �column� (see the picture below) in the same way as for the trivial case (as we
know that each Serre �bration has HLP w.r.t. a pair of CW-complexes)

Ci × {0} ∪ A0
i × I0

f∪H|
A0
i
×I0//

��

Uα × F
pr

��
Ci × I0

H

44

h // Uα

where Aki =
⋃
h((Ci∩Cl)×Ik)⊆Uα,l<i(Ci ∩ Cl). Since we know H|Ci×{j1} now, we can continue

with the second �column�:

Ci × {j1} ∪ A1
i × I1

f∪H|
A1
i
×I1 //

��

Uα × F
pr

��
Ci × I1

H

44

h // Uα

Thus, we can proceed through all columns in this way until we will get H on the whole
In × I. The illustration of this situation4:

In

I

C0

I0 I1j1 j2 j3j0=0

Ci1

Ci2

4it is drawn as planar, but it should be n-dimensional
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Exercise 5. Show the structure of the �bre bundle Sn
p−−→ RPn.

Solution. The �bre is S0 = {−1, 1}, since x,−x 7−→ [x]. Now, we want to �nd a neigh-
bourhood U of [x] such that p−1(U) ∼= U × S0. Assume that

[x] = [1 : x1 : · · · : xn] ∈ U0 = {[y0 : y1 : · · · : yn] | y0 6= 0}

then we have the homeomorphism ϕ : U0 × S0 −→ p−1(U0) ⊆ Sn given by ϕ([x], 1) =
(1,x1,...,xn)
‖(1,x1,...,xn)‖ and ϕ([x],−1) = (−1,−x1,...,−xn)

‖(1,x1,...,xn)‖ . We can cover the whole RPn by the open

subsets Ui = {[y0 : y1 : · · · : yn] | yi 6= 0}.

Exercise 6. Show the structure of the �bre bundle S2n+1 p−−→ CPn with the �bre S1.

Solution. Let us look on the special case S1 ↪→ S3 → CP1 ∼= S2 called �Hopf �bration�.
Realise that we can consider S3 ⊆ C2, so we can (locally) de�ne the projection S3 → CP1

by (z1, z2) 7→ z1
z2
.

In the general case, realize that S2n+1 ⊆ Cn+1. Take U0 = {[z0 : z1 : · · · : zn] | z0 6=
0} ⊆ CPn. Then the map U0 × S1 → p−1(U0) ⊆ S2n+1 is given by

([1 : z1 : · · · : zn], eit) 7−→
(eit, eitz1, . . . , e

itzn)

‖(eit, eitz1, . . . , eitzn)‖

We can do the same for other Ui from the covering of CPn.


