Note: This tutorial originates in 2017^1 .

Define the *n*-th homotopy group of the space X with the base point x_0 as the group of homotopy classes of the continuous maps $(I^n, \partial I^n) \to (X, x_0)$ with the operation given by the prescription:

$$(f+g)(t_1,\ldots,t_n) = \begin{cases} f(2t_1,t_2,\ldots,t_n) & 0 \le t_1 \le \frac{1}{2}, \\ g(2t_1-1,t_2,\ldots,t_n) & \frac{1}{2} \le t_1 \le 1. \end{cases}$$

Denote it $\pi_n(X, x_0)$. Note that a monoid structure induced by concatenation of maps with respect to other components as the first one coincides with above prescription by the *Eckmann-Hilton* argument. To see that f + g is a continuous map again we refer to the well-known *pasting* lemma.

Exercise 1. Show the operation on $\pi_n(X, x_0)$ is associative.

Solution. We want to show $(f + g) + k \sim f + (g + k)$. We will find prescription for the homotopy by the following diagram:

In the following notation², understand $f(t_1)$ as $f(t_1, t_2, \ldots, t_n)$ for all $t_2, \ldots, t_n \in I$.

$$h(s,t_1) = \begin{cases} f(\frac{4}{1+s}t_1) & (s,t_1) \in \mathbf{I} & (t_1 \in [0,\frac{1}{4}+s\frac{1}{4}], s \in [0,1]) \\ g(4t_1-(1+s)) & (s,t_1) \in \mathbf{II} & (t_1 \in [\frac{1}{4}+s\frac{1}{4},\frac{1}{2}+s\frac{1}{4}], s \in [0,1]) \\ k(\frac{4}{2-s}t_1-\frac{2+s}{2-s}) & (s,t_1) \in \mathbf{III} & (t_1 \in [\frac{1}{2}+s\frac{1}{4},1], s \in [0,1]) \end{cases}$$

Exercise 2. Show that the element given by prescription

$$(-f)(t_1,\ldots,t_n) = f(1-t_1,t_2,\ldots,t_n)$$

is really the inverse element of f.

Solution. We want to show $f + (-f) \sim const$. The constant will be (function given by) the point $f(2t_1) = f(0)$. Again let us draw a diagram (the square (its boundary) in the middle sign the same value; the wavy line sign one value too).

¹see https://is.muni.cz/el/sci/jaro2019/M8130/um/68045051/

²and some other following notations

Remark. One can see, that proving by pictures is much more pleasant. There is a long exact sequence:

$$\cdots \to \pi_{n+1}(X, A, x_0) \xrightarrow{\partial} \pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \to \dots$$

Exercise 3. Show the exactness of this sequence in $\pi_n(X, A, x_0)$ and $\pi_n(A, x_0)$.

Solution. At first we will show the exactness in $\pi_n(X, A, x_0)$.

Let us show the inclusion "im $j_* \subseteq \ker \partial$ ". Take an arbitrary $f \in \pi_n(X, x_0)$, thus $f: (I^n, \partial I^n) \to (X, x_0)$. From definition $j_*(f) = j \circ f: (I^n, \partial I^n, J^{n-1}) \to (X, A, x_0)$, where $J^{n-1} = I^n - I^{n-1}$, and $\partial([f]) = [f|_{I^{n-1}}] = const$, since f is constant on whole $\partial I^n \supseteq I^{n-1}$.

"im $j_* \supseteq \ker \partial$ ": Take an arbitrary $g \in \ker \partial \subseteq \pi_n(X, A, x_0)$, thus $g: (I^n, \partial I^n, J^{n-1}) \to$ (X, A, x_0) . Since $g \in \ker \partial$, there is the homotopy $h: (I^{n-1}, \partial I^{n-1}) \times I \longrightarrow (A, x_0)$ such that $h(x,0) = g|_{I^{n-1}}(x)$ and h(x,1) = const. Because $h(x,t) \in A$ and $h(x',t) = x_0$ for all $x \in I^{n-1}, x \in \partial I^{n-1}$ and $t \in [0,1]$, we can take $f \in \pi_n(X, x_0)$ defined by

$$f(x,t) = \begin{cases} g(x,2t) & \text{for } t \in [0,\frac{1}{2}] \\ h(x,2t-1) & \text{for } t \in [\frac{1}{2},1] \end{cases}$$

It is not hard to prove that $j_*(f)$ is homotopic to g, see picture below.

Another approach to showing this inclusion is to view homotopy groups $\pi_n(X, A, x_0)$ as the homotopy classes $[(D^n, S^{n-1}, s_0), (X, A, x_0)]$ and the connecting homomorphism ∂ as the restriction $|_{S^{n-1}}$. Then we have the following commutative diagram

The homotopy H exists by HEP of the pair (D^n, S^{n-1}) . Then we can take $[H(-, 1)] \in \pi_n(X, x_0)$ and $j_*([H(-, 1)]) = [g]$.

Now, let us show the exactness in $\pi_n(A, x_0)$.

"im $\partial \supseteq \ker i_*$ " Let $f \in \ker i_* \subseteq \pi_n(A, x_0)$ be an arbitrary. Because $i_*f \sim const$, we have homotopy $h: (I^n, \partial I^n) \times I \to (X, x_0)$ such that h(x, 0) = f(x) and $h(x, 1) = x_0$. It holds $h \in \pi_{n+1}(X, A, x_0)$, since $h(x, 0) \in A$, $h(x, 1) = x_0$ and $h(x', t) = x_0$ for all $x \in I^n$ and $x' \in \partial I^n$.

"im $\partial \subseteq \ker i_*$ " Let $h \in \pi_{n+1}(X, A, x_0)$ be an arbitrary. Denote $h|_{I^n} = f$. Then h gives the homotopy $i_*f \sim const$ in (X, x_0) , since h(x, 0) = f(x), $h(x, 1) = x_0$ and $h(x', t) = x_0$ for all $x' \in \partial I^n$ and $x \in I^n$.

A map $p: E \to B$ is called a fibration if it has the homotopy lifting property for all (D^n, \emptyset) :

If p is a fibration then it has the homotopy lifting property also for all pairs (X, A) of CW-complexes:

Recall that $p: E \to B$ is a fibre bundle with fibre F if there are open subsets U_{α} such that $B = \bigcup_{\alpha} U_{\alpha}$ and the following diagram commutes for all U_{α} :

Typical examples of fibre bundles with fibre S^1 over I are a trivial bundle or Mobius band³.

Exercise 4. Show that every fibre bundle is a fibration.

Solution. At first consider a trivial fibre bundle $E = B \times F$. Take an arbitrary commutative diagram of the form:

$$D^{n} \times \{0\} \xrightarrow{f} B \times F$$

$$\downarrow \qquad \qquad \downarrow^{\operatorname{pr}_{B}}$$

$$D^{n} \times I \xrightarrow{h} B$$

³http://rin.io/intro-to-bundles/

Then h(-,0) = f and we can define $H: D^n \times I \to B \times F$ by $H(x,t) = (h(x,t), \operatorname{pr}_F(f(x)))$. One can see that the diagram commutes with H too.

Now, let $p: E \to B$ be an arbitrary fibre bundle with fibre F and $B = \bigcup_{\alpha} U_{\alpha}$. We can take I^n instead of D^n and consider a diagram:

Because I^n is compact, we can divide $I^n \times I$ to finitely many subcubes $C_i \times I_k$ where $I_i = [j_k, j_{k+1}]$ such that $h(C_i \times I_k) \subseteq U_\alpha$ for some α . This is possible due to Lebesgue's number lemma. Since $U_\alpha \times F \to U_\alpha$ makes a trivial bundle, we can use the same approach as above for each subcube. Since we know $H|_{C_i \times \{0\}}$, we can find the lift H for all cubes in the first "column" (see the picture below) in the same way as for the trivial case (as we know that each Serre fibration has HLP w.r.t. a pair of CW-complexes)

where $A_i^k = \bigcup_{h((C_i \cap C_l) \times I_k) \subseteq U_{\alpha}, l < i} (C_i \cap C_l)$. Since we know $H|_{C_i \times \{j_1\}}$ now, we can continue with the second "column":

Thus, we can proceed through all columns in this way until we will get H on the whole $I^n \times I$. The illustration of this situation⁴:

 4 it is drawn as planar, but it should be *n*-dimensional

Exercise 5. Show the structure of the fibre bundle $S^n \xrightarrow{p} \mathbb{R}P^n$.

Solution. The fibre is $S^0 = \{-1, 1\}$, since $x, -x \mapsto [x]$. Now, we want to find a neighbourhood U of [x] such that $p^{-1}(U) \cong U \times S^0$. Assume that

$$[x] = [1:x_1:\dots:x_n] \in U_0 = \{[y_0:y_1:\dots:y_n] \mid y_0 \neq 0\}$$

then we have the homeomorphism $\varphi \colon U_0 \times S^0 \longrightarrow p^{-1}(U_0) \subseteq S^n$ given by $\varphi([x], 1) = \frac{(1,x_1,\dots,x_n)}{\|(1,x_1,\dots,x_n)\|}$ and $\varphi([x], -1) = \frac{(-1,-x_1,\dots,-x_n)}{\|(1,x_1,\dots,x_n)\|}$. We can cover the whole $\mathbb{R}P^n$ by the open subsets $U_i = \{[y_0:y_1:\dots:y_n] \mid y_i \neq 0\}$.

Exercise 6. Show the structure of the fibre bundle $S^{2n+1} \xrightarrow{p} \mathbb{C}P^n$ with the fibre S^1 .

Solution. Let us look on the special case $S^1 \hookrightarrow S^3 \to \mathbb{C}P^1 \cong S^2$ called "Hopf fibration". Realise that we can consider $S^3 \subseteq \mathbb{C}^2$, so we can (locally) define the projection $S^3 \to \mathbb{C}P^1$ by $(z_1, z_2) \mapsto \frac{z_1}{z_2}$.

In the general case, realize that $S^{2n+1} \subseteq \mathbb{C}^{n+1}$. Take $U_0 = \{[z_0 : z_1 : \cdots : z_n] \mid z_0 \neq 0\} \subseteq \mathbb{C}P^n$. Then the map $U_0 \times S^1 \to p^{-1}(U_0) \subseteq S^{2n+1}$ is given by

$$([1:z_1:\cdots:z_n],e^{it})\longmapsto \frac{(e^{it},e^{it}z_1,\ldots,e^{it}z_n)}{\|(e^{it},e^{it}z_1,\ldots,e^{it}z_n)\|}$$

We can do the same for other U_i from the covering of $\mathbb{C}P^n$.