Exercise 1. There is a lemma, that says: Given the following diagram, where rows are long exact sequences and m is an iso

we get a long exact sequence

$$K_n \xrightarrow{(i,f)} L_n \oplus \overline{K}_n \xrightarrow{g-\overline{i}} \overline{L}_n \xrightarrow{i \circ m^{-1} \circ \overline{j}} K_{n-1} \longrightarrow \cdots$$

We can denote $\partial = h \circ m^{-1} \circ \overline{j}$. Show exactness in $L_n \oplus \overline{K}_n$ and also in \overline{L}_n . **Exercise 2.** There is a long exact sequence of the triple (X, A, B), i.e. $(B \subseteq A \subseteq X)$:

$$\cdots \to H_n(A,B) \xrightarrow{i} H_n(X,B) \xrightarrow{j_X} H_n(X,A) \xrightarrow{D_*} H_{n-1}(A,B) \to \cdots,$$

with $H_n(X, A) \xrightarrow{\partial_*} H_{n-1}(A) \xrightarrow{j_A} H_{n-1}(A, B)$. We get this sequence from a special short exact sequence of chain complexes. Show that it is exact and that the triangle commutes, that is $D_* = j_A \circ \partial_*$.

Exercise 3. Apply previous exercise to the triple $(D^k, S^{k-1}, *)$, where * is a point.

Exercise 4. Show that the chain in $C_k(\Delta^k, \partial \Delta^k)$ given by id: $\Delta^k \to \Delta^k$ is the representative of the generator of

$$H_k(\Delta^k, \partial \Delta^k) \cong \mathbb{Z}.$$

(Use induction and the long exact sequence for triple.)

Exercise 5. Using the Mayor-Vietoris exact sequence compute the homology groups of the torus.

Exercise 6. Prove Snake Lemma.

Exercise 7. Prove 5-lemma.

Proof using Snake Lemma.