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1.7 Exercises. Worked examples

L. There are twO roads from Ato B and two roads ?oa. B to C. Each 0», the four _.oma.m is blocked by
mmaz with probability p, independently of the others. Find the probability that there is an open road
from A to B given that there is no open route from A to C.

If, in addition. there is a direct road from A to C, this Sma.cmm:m blocked with probability p
independently of the others, find the required conditional probability.

2. Calculate the probability thata hand of 13 cards dealt from a normal shuffled pack of 52 contains

exactly two kings and one ace. What is the probability that it contains exactly one ace given that it
contains exactly two kings?

3. A symmetric random walk takes place on the integers 0, 1,2, ..., N with absorbing barriers at 0
and N, starting at k. Show that the probability that the walk is never absorbed is zero.

4. _.:z so-called *sure thing principle” asserts that if you prefer x to y given C, and also prefer x to
y given C¢, then you surely prefer x to y. Agreed?
5. A pack contains m cards, labelled 1,2, ..., m. The cards are dealt out in a random order, one

by one. .Q:S 9.,: the label of the kth card dealt is the largest of the first k cards dealt, what is the
probability that it is also the largest in the pack?

1.8 Problems
1. A traditional fair die is thrown tw
(2) asix tums up exactly once?
() both numbers are odd?

Mw the sum of the scores is 47

ice. What is the probability that:

th
€ sum of the scores is divisible by 37
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Problems )
Exercises [1.8.4]-{1.8.14]

4. Describe the underlying probability spaces for the following experiments:
(a) a biased coin is tossed three times; .

(b) two balls are drawn without replacement from an i igi i
N urn which originally contained twi arine
and two vermilion balls; & o uliramarine

(c) abiased coin is tossed repeatedly until a head turns up.

5. Show that the probability that exactly one of the events A and B occurs is
P(A) + B(B) —2B(A N B).

6. Provethat P(AUBUC) =1—P(A®| B°NC)2(B | C°)2(C°).

7. (a) If A is independent of itself, show that P(A) is O or 1.
(b) IfP(A)isOor 1, show that A is independent of all events B.

8. Let Fbe ao-field of subsets of 2, and suppose ¥ : ¥ — [0. 1] satisfies: (i) P(2) = l.and (i) P
is additive, in that P(A U B) = F(A) + P(B) whenever AN B = 2. Show that 2(2) = 0.

9. Suppose (2, F, P) is a probability space and B € Fsatisfies P(B) > 0. Let G : F— [0, 1] be
defined by Q(A) = P(A | B). Show that (9, F, Q) is a probability space. If C € Fand Q(C) > 0.
show that Q(A | C) = P(A | BN C); discuss.

10. Let By, By, ... be a pattition of the sample space , each B; having positive probability. and
show that

oC
P(A) = »_F(A | B;))Z(B))-
j=!

11. Prove Boole’s inequalities:
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