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Introduction to Uniqa



UNIQA at a glance

Key financials EURm

Diversification by regions and products (GWP(a)(b) FY17)

UNIQA’s geographical footprint

2013 2014 2015 2016(c) 2017

Gross written premiums(a) 5,886 6,064 6,325 5,048 5,293

Premiums earned 

(retained)(a)
5,641 5,839 6,102 4,443 6,628

Earnings before taxes 308 378 423 225 242

Consolidated net profit 285 290 331 148 161

Combined ratio (net) (P&C) 99.8% 99.6% 97.8% 98.1% 97.5%

Return on Equity 11.9% 9.9% 10.9% 4.7% 5.1%

69%

31%

UNIQA Austria

UNIQA International

50%

20%

30%
Life

P&C

Health

(a) Including savings portion of premiums from unit- and index-linked life insurance,

(b) Excluding consolidation and UNIQA Reinsurance, (c) UNIQA signed contract to sell Italian operations on Dec 2, therefore FY16  IFRS figures  excluding Italy
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What are Shared Services?

A central service unit is an entity within a multi-unit organization responsible for supplying

the business units, respective divisions and departments with specific operational tasks & 

processes (eg accounting, payroll, IT, compliance or as in UNIQA’s case actuarial and risk)
“

“

UNIQA 4WARD (U4W)

Local UNIQA Business Units (BUs)  and UNIQA 

Group are customers of U4W and will outsource

specific processes to U4W

U4W performs the process for 

the customers according to 

commonly defined Service Levels

UNIQA operating countries and HQ

Benefits through UNIQA 4WARD

▪ Standardization

▪ Specialization

▪ Speed



Benefits with UNIQA 4WARD
Development of personal and professional skills with UNIQA

7

Actuarial education and continuous professional & soft-skill training

What can UNIQA 4WARD offer you? 

General onboarding training with focus on UNIQA tools and standards as well as intercultural 

awareness
1

Mentoring program and on-the-job knowledge transfer3

Function specific training in relevant Group department in Vienna – partially spending time in 

Vienna and in Bratislava with a strong “applied learning” (learning by doing approach)
2

International working culture and positive working atmosphere4

Various employee benefits

Flexible working

times & Home 

Office

25 vacation 

days

Language 

courses

Bonus 

payments

Your Development

Start-up environment with the stability of an international insurance company in the 

background. 5



Mathematics Challenge

8

https://www.uniqa4ward.com/en/challenge.html#Challenge
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Introduction

▪ Topics
➢Model assessment and selection

➢Cross validation, AIC, BIC

➢Linear Models

➢PCR, Regularization methods

➢Generalized Linear models

➢Pricing process 

➢Machine Learning in Insurance 
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Introduction
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Introduction

▪ Let 𝑌 be a quantitative response and 𝑋 = (𝑋1, … , 𝑋𝑝) be a set of regressors and 

suppose: 𝑌 = 𝑓 𝑋 + 𝜖, for some fixed (but unknown) function 𝑓 .

▪ 𝜖 has mean 0 and is independent of 𝑋. Often we assume normality.

▪ Note: 𝑋 can be fixed or random

▪ Example: Y is the number of claims and X are the characteristics of a driver and 

his car
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Introduction

▪ Statistical learning is a set of approaches for estimating 𝑓

by መ𝑓 from the data.

▪ Estimation goals can be:

➢Prediction

➢ Inference

Ivana Milović 13



Introduction

▪ Prediction: ෠𝑌 = መ𝑓(𝑋), for some estimate መ𝑓. 

▪ If prediction is our only goal and we do not have interest in the form of 𝑓, then 

many modern techniques give good results: random forests, gradient boosting 

trees, etc.

▪ Example: predicting prices on the stock exchange. Here the interpretation is not 

important, as long as the results are good.

Ivana Milović 14



Introduction

▪ The accuracy of ෠𝑌 depends on two quantities:

➢ reducible error – coming from approximating 𝑓 by መ𝑓

➢ irreducible error – the error coming from 𝜖

▪ We measure the accuracy by the expected prediction error

▪ 𝐸(𝑌 − ෠𝑌)2 = 𝐸(𝑓 𝑋 − መ𝑓(𝑋))2+ 𝑉𝑎𝑟(𝜖)

▪ Goal: to find a method that has small reducible error

Ivana Milović 15
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Introduction

▪ Inference: we want to also understand the form of 𝑓, i.e. the relationship 

between 𝑌 and 𝑋 = (𝑋1, … , 𝑋𝑝) .

▪ Is 𝑓 linear or more complex?

▪ Which regressors are associated with 𝑌?

▪ What is their relationship?

Ivana Milović 16
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Choice of Model

▪ We may choose our model based on what we are more interested in: prediction 

or inference

▪ Example: 

➢ Parametric models like linear models and GLMs: simple and interpretable, 

but not always very accurate

➢ Non-parametric models like splines, GBM, random forests: better 

predictions but much less interpretable

▪ Factors like sample size, computational power, etc. also play a significant role in 

making a decision.
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Choice of Model

Example: Linear regression vs. splines

Ivana Milović 19



Machine learning controversy

▪ Many machine learning techniques offer fully automatized routines for 

calculating prices, insurance premiums, etc. or clustering data into different 

segments (for example: brands or regions)

▪ But if the interpretability is missing, many problems might occur

Ivana Milović 20



Machine learning controversy

▪ Certain companies have sparked controversy as ethnic, gender or ‘unethical’ 

variables slipped into their models, often because data bias was not corrected

Ivana Milović 21



Machine learning controversy
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Machine learning controversy

▪ What about the insurance industry? 

▪ Current standard: GLM models

▪ Can Machine learning replace them?

▪ Later on that! 

Ivana Milović 23



Assessing Model Accuracy

▪ No model dominates all other models over all possible data sets. We need to 

decide which model is most suitable based on the data set given

▪ The prediction error 𝐸(𝑌 − መ𝑓(𝑋))2 can be estimated by the mean-squared error 

(MSE) 

𝟏

𝒏
σ𝒊=𝟏
𝒏 ( 𝒀𝒊 − ෠𝒇(𝑿𝒊))

𝟐

given a sample (𝑋𝑖 , 𝑌𝑖)𝑖=1
𝑛 . 

▪ Here 𝑋𝑖 denotes a 𝑝 −vector of regressors for the i-th data point

Ivana Milović 24



Assessing Model Accuracy

▪ But we do not want to predict the model accuracy on the data we already 

observed.  
1

𝑛
σ𝑖=1
𝑛 ( 𝑌𝑖 − መ𝑓(𝑋𝑖))

2 is actually in-sample (training) MSE.

▪ We want our model to perform well on the future data, 

▪ For a new (unseen) observation 𝑋0, 𝑌0 , it should hold that መ𝑓 𝑋0 ≈ 𝑌0. 

▪ In general, when considering all new data points: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑋0,𝑌0

(𝑌0 − መ𝑓(𝑋0))
2 should 

be small. This is out-of-sample (testing) MSE

Ivana Milović 25



Assessing Model Accuracy

▪ There is no guarantee that a model with a small training MSE will also have a 

small testing MSE. This leads to concepts of underfitting and overfitting.

Ivana Milović 26



Assessing Model Accuracy

▪ As the model complexity increases, the training error gets smaller but the testing 

error increases.

▪ Underfitting: the model is too simple and performs badly on the training data, 

and consequently on the testing data

▪ Overfitting: the training data is modelled too well, because non-existing 

patterns in the data are found (coming from the noise). Therefore the 

performance on the future data is poor.

Ivana Milović 27



Assessing Model Accuracy
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Bias-variance trade-off

▪ Let 𝑋0 be fixed. Note that the test MSE can be written as

𝐸(𝑌0 − መ𝑓(𝑋0))
2 = 𝐵𝑖𝑎𝑠 ෡𝑓 (𝑋0

2
+ 𝑉𝑎𝑟 መ𝑓(𝑋0) + Var ϵ .

▪ Bias: Error introduced by approximating 𝑓 by መ𝑓

▪ Variance: how much መ𝑓 changes if we use different data sets for training

Ivana Milović 29
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Bias-variance trade-off

▪ Easy to find a method with low bias and high variance, just use a curve that 

connects all the points

▪ Easy to find a method with low variance and high bias, just take a flat line 

through the data

▪ But, we want a method that simultaneously has low bias and low variance. 

Ivana Milović 30



Bias-variance trade-off

▪ Example:

Ivana Milović 31



Test MSE Estimation

▪ But in real-life situations it is not possible to compute the test MSE, because 𝑓 is 

unknown, so we need to estimate it. 

▪ This could be done in the following ways:

➢ Cross-Validation: directly estimating test MSE by using resampling 

➢ Indirect way of estimating test error: adjust the training error by a penalty term which 

takes the model dimension into account

Ivana Milović 32



Cross Validation



Cross-Validation

▪ Used to estimate the test MSE, for a given statistical model

▪ It tells us how our model performs on an unseen data set

▪ When comparing several competing models, the one with the smallest cross-

validation error (CV) is preferred. 

▪ It can also be used for selecting tuning parameters for a chosen model (Ridge, 

Lasso, etc.)

Ivana Milović 34



Cross-Validation

There are 3 ways in which CV can be done:

1. Validation set approach: divide the data randomly into two data sets: training and 

testing. Usually a 80-20% split is done. The model is then fitted using the training set and 

the prediction error 
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒀𝒊 −෢𝒀𝒊

𝟐
is calculated on the testing data

Ivana Milović 35
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Cross-Validation

Example: 

▪ The model trained on 80% of the data gives the following prediction: ෠𝑌 = 2𝑋.

▪ The test data is:

▪ CV equals: 
1

3
(5 − 4)2+(9 − 10)2+(10 − 8)2 =

6

3
= 2

Ivana Milović 36
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Cross-Validation

▪ Drawbacks:

➢ CV error can be extremely variable, depending on how the data was split

➢ Only a subset of the data was used for training, this introduces a lot of bias 
so we might overestimate the testing error

2. Leave-one-out cross-validation (LOOCV): Dataset with 𝑛 sample points is split 

into 𝑛 − 1 data points, on which model training is done and the testing is done on 

the remaining one data point. This is then repeated 𝑛 times, so that each point 

gets to be in the training and the validation data set. The prediction errors are then 

averaged out.
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Cross-Validation

▪ Now there is no randomness in data splits, and there is much less bias compared to 

the previous method, because 𝑛 − 1 points are used for training

▪ Problem: we have to fit the model 𝑛 times. Computationally extensive.

Ivana Milović 38



Cross-Validation

3. K-fold cross-validation: Randomly divide the data set into 𝑘 parts of (approximately) 

equal size. Then train the model on 𝑘 − 1 parts and test on the remaining part. Repeat 𝑘

times and average out the testing error.

Ivana Milović 39



Cross-Validation

▪ How big should 𝑘 be? Experience shows that 𝒌 = 𝟓 or 𝒌 = 𝟏𝟎 show best 

results.

▪ We fit the model only 𝑘 times

▪ Bias remains small, because we fit on almost all data and variability of the 

CV estimate gets smaller compared to LOOCV, because the outputs for 

each fit are less correlated

▪ This method corrects the disadvantages over the previous two.

Ivana Milović 40



Example

▪ Response variable mpg – miles per gallon

▪ Polynomial regression is performed with the regressor horsepower. But which 

degree to take?

▪ Cross-validation can give us an answer
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Example
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Example

Ivana Milović 43

Validation set approach



Example
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AIC, BIC, etc.

Other way of estimating the test MSE error is by adjusting the training 

MSE.

▪ AIC (Akaike Information Criterion) is an estimator for out-of-sample prediction 

error and thereby for the relative quality of a statistical model for a given set of 

data.

▪ Given a collection of models, AIC estimates the quality of each model. Thus, 

AIC provides a means for model selection.
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AIC, BIC, etc

▪ Akaike extends the concept of the maximum likelihood estimation to the case 

where the number of parameters 𝑝 is also unknown. A penalty is introduced, 

depending on 𝑝. So a parameter is added to the model, only if it leads to a 

significant improvement in the fit.

Ivana Milović 47



AIC, BIC, etc

▪ Let 𝑓 𝑦 𝜃 be a candidate model for estimating 𝑌, for 𝜃 ∈ 𝑅𝑝. For 

example: 𝑓 𝑦 𝜃 is the density of 𝑁 𝑋𝜃, 𝐼

▪ Let መ𝜃 = መ𝜃 𝑌 be the MLE estimator, given the data 𝑌 ∈ 𝑅𝑛.

▪ Then, 𝑨𝑰𝑪 = −𝟐𝒍𝒐𝒈𝒇 𝒀 ෡𝜽 + 𝟐𝐩 is the estimate of the test MSE

▪ Model with the smallest AIC is chosen

Ivana Milović 48



AIC, BIC, etc.

▪ BIC (Bayesian Information Criterion) is a similar method to AIC.

➢ The model with the smallest 𝑩𝑰𝑪 = −𝟐𝒍𝒐𝒈𝒇 𝒀 ෡𝜽 + 𝐩 𝐥𝐨𝐠(𝐧) is chosen.

➢ Since the penalty term here is larger, sparser models are selected than with 

AIC.

➢ In the linear regression model with normal errors: AIC and BIC have the 

following forms:

𝑨𝑰𝑪 = 𝒏 𝐥𝐨𝐠(𝑴𝑺𝑬) + 𝟐𝒑 and 𝑩𝑰𝑪 = 𝒏 𝒍𝒐𝒈(𝑴𝑺𝑬) + 𝒑𝒍𝒐𝒈(𝒏)

Ivana Milović 49
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Linear Models
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Model selection and regularization

▪ Linear models (and generalized linear models: GLMs), though simple, turn out 

to be surprisingly competitive in real-world problems, compare to more complex 

models 

▪ Reason for that lies in their simplicity and interpretability

▪ GLMs are the standard in the insurance business and most of the results for 

linear models can be naturally generalized

▪ But what is their prediction accuracy and what happens when the number of 

parameters 𝒑 is large compared to the sample size 𝒏?  

Ivana Milović 51



Model selection and regularization

▪ Let us focus on linear models, for demonstration

▪ Assume that: 𝒀 = 𝑿𝜷 + 𝝐, for some 𝛽 ∈ 𝑅𝑝

▪ 𝐸 𝜖 = 0 and 𝑉𝑎𝑟 𝜖 = 𝜎𝐼.

▪ Also, Y ∈ 𝑅𝑛 and X ∈ 𝑅𝑛×𝑝.
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Model selection and regularization

▪ OLS estimator መ𝛽 = 𝑋′𝑋 −1𝑋′𝑌 is well-defined for 𝑛 ≥ 𝑝 and it is unbiased. 

Therefore, the estimates ෠𝑌 = 𝑋 መ𝛽 are unbiased. 

▪ For 𝑝 > 𝑛, OLS is not even defined. Therefore, we have to come up with some 

other estimators.
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Model selection and regularization

But what about the variance of these estimates? 

▪ If 𝑛 ≫ 𝑝, the variance is usually small and our estimates are accurate

▪ But if two or more variables are highly correlated, this could lead to high 

variance and therefore unstable estimates. This happens, because det(𝑋′𝑋) is 

almost 0 and the matrix inversion becomes very unstable

Ivana Milović 54



Model selection and regularization

▪ Example of (potentially) highly-correlated variables in Motor Insurance

➢ entry user age and current user age

➢ vehicle age and contract age

➢ population density and regional segmentation variables

Ivana Milović 55



Model selection and regularization

▪ Also if 𝑛 is not much larger than 𝑝, the estimates can get very unstable. 

▪ Example: if all regressors are i.i.d. N(0,1) the variance of the predictions equals 

𝜎
𝑝

𝑛−𝑝−1
. 

▪ This is problematic for 𝑝 large compared to 𝑛.
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Model selection and regularization

▪ Alternatives to OLS in linear regression:

➢ Subset selection (best subset and stepwise)

➢ Dimension reduction (PCA, for example)

➢ Shrinkage methods (Ridge, Lasso, etc.)

Ivana Milović 57



Subset Selection

Best subset selection: for a linear model with 𝑝 predictors do

➢ Let 𝑀0 be the null model with zero regressors, i.e. sample mean of 𝑌 is used as a 

predictor

➢ For 𝑘 = 1,2,… , 𝑝

1. Fit all 𝑝
𝑘

models that contain exactly 𝑘 predictors

2. Pick the best among these 𝑝
𝑘

models and call it 𝑀𝑘 . I.e., choose the model with the largest 𝑅2.

➢ Select the best model from 𝑀0, 𝑀1, … ,𝑀𝑝 using cross-validation, AIC, BIC, etc.

➢ Note: here you cannot use 𝑅2 because then the largest model would always be 

chosen.
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Subset Selection

▪ This method is conceptually very simple to understand

▪ Problem? Too many models to fit! How many?

▪ 2𝑝 models to fit. 

▪ For example: for 𝑝 = 40, there are 1 073 741 824 models to fit!

▪ So we need another solution.
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Subset Selection

2. Stepwise selection

➢ Forward

➢ Backward

Forwards stepwise selection

▪ Computationally efficient alternative to the best subset selection

▪ Here we begin with the null model and add predictors one at the time until we 

get the full model (or some stopping rule is applied)

▪ Then we choose among these models using cross-validation, AIC, BIC, etc.
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Subset Selection

More formally:

Forwards stepwise selection: for a linear model with 𝑝 predictors do

➢ Let 𝑀0 be the null model with zero regressors, i.e. sample mean of 𝑌 is used as a predictor

➢ For 𝑘 = 0,1, … , 𝑝 − 1

1. Consider all 𝑝 − 𝑘 models that add one additional predictor to the model 𝑀𝑘

2. Pick the best among these 𝑝 − 𝑘 models and call it 𝑀𝑘+1. I.e. choose the model with the largest 𝑅2.

➢ Select the best model from 𝑀0, 𝑀1, … ,𝑀𝑝 using cross-validation, AIC, BIC, etc. 

➢ Note: here you cannot use 𝑅2 because then the largest model would always be chosen.
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Subset Selection

▪ Here we fit only 1 + σ𝑘=0
𝑝−1

(𝑝 − 𝑘) = 1 +
𝑝 (𝑝+1)

2
models

▪ For example: for 𝑝 = 40, there are 466 models to fit. Much better than before.

▪ This procedure works well in practice, but now there is no guarantee that we will 

select the best method overall

Backwards stepwise selection: 

▪ Similar: here you start with the full model and delete regressors one at the time
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Example: Prostate cancer

▪ The data come from a study that examined the correlation between the level of 

prostate specific antigen (response variable) and a number of clinical 

measures (regressors) in men who were about to receive a radical 

prostatectomy. 

▪ It is data frame with 97 rows and 9 columns.
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Example: Prostate cancer
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Example: Prostate cancer

▪ R Package Leaps is used to select the best model (based on 𝑅2) of each size
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Example: Prostate cancer

▪ Then AIC and BIC are calculated for each of these models, based on the formula for linear 

regression with normal errors.
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Example: Prostate cancer
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Summary

▪ We assess the model quality by its prediction error

𝟏

𝒏
σ𝒊=𝟏
𝒏 ( 𝒀𝒊 − ෠𝒇(𝑿𝒊))

𝟐

given a sample (𝑋𝑖 , 𝑌𝑖)𝑖=1
𝑛 . 

▪ But this only one part of it – training (in-sample) error

▪ It is necessary to estimate this error for new (unseen) data – testing (out-of-

sample) error
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Summary

▪ A model (and its complexity) should be chosen based on these two prediction 

errors:
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Summary

▪ The training error we can estimate from the sample directly

▪ There are two types of methods for estimating the testing error

1. Cross – validation: based on resampling

2. AIC, BIC, etc.: based on testing error ≈ training error + dimension 

penalty
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Summary

▪ Linear models: simple but widely-used because of it simplicity and 

interpretability

▪ OLS well-defined for 𝑛 ≥ 𝑝

▪ But if performs badly if 

➢ p is large compared to n

➢ some of the regressors are highly correlated 
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Summary

▪ Some methods to reduce the number of parameters:

1. Best subset selection: all submodels are considered, but this is 

computationally infeasible

2. Stepwise-regression: regressors are added one at the time. Once a 

regressor is chosen, it stays
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Other Methods



Preview

▪ We are still to see:

➢ Some other methods that do model selection for linear models

➢ How to deal with correlations

➢ How to deal with 𝑝 > 𝑛 case?
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Principal Component Regression

▪ PCA uses an orthogonal transformation to convert a set of possibly correlated 

variables into a set linearly uncorrelated variables called principal components.

▪ This transformation is defined in such a way that the first principal component has 

the largest variance, the second principal component the second largest, etc.

▪ This way a dimension reduction can be performed and consequently OLS can be 

fitted using the newly obtained regressors. 

▪ One can show that this reduces the variance of the OLS estimator
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Principal Component Regression
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Principal Component Regression

▪ The only issue with this procedure is that the new 

regressors have lost the interpretability, because they are 

linear combinations or the original regressors.

▪ But if the prediction is the only goal, then this procedure is 

more than suitable.
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Shrinkage Methods

▪ We have already mentioned that if 𝑝 is relatively large compared 

to 𝑛, or if some regressors are highly-correlated then the OLS 

estimates can be very variable and therefore unstable.

▪ Also we cannot do OLS for 𝑝 > 𝑛.

▪ In order to tackle these problems, shrinking the regression 

coefficients is helpful 
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Shrinkage Methods

▪ We know that if OLS is defined then (Gauss-Markov)

➢ it is unbiased

➢ has the smallest variance among all unbiased linear estimators

▪ So, if we want to stay in the class of unbiased linear 

estimators, we cannot further reduce the variance.

▪ Idea: introduce a little bit of bias to decrease the variance 

significantly
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Ridge estimator

▪ Let 𝜆 ≥ 0 be fixed. Then the Ridge estimator is defined as:

▪ መ𝛽𝜆 = 𝑎𝑟𝑔min
𝛽∈𝑅𝑝

( 𝑌 − 𝑋𝛽 2
2+𝜆 𝛽 2

2) = 𝑎𝑟𝑔 min
𝛽 2

2≤𝑐
𝑌 − 𝑋𝛽 2

2

for some 𝑐 that depends on 𝜆.

▪ For 𝜆 = 0, we obtain OLS. Otherwise we obtain a biased 

estimator with smaller variance than OLS
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Lasso estimator

▪ Let 𝜆 ≥ 0 be fixed. Then the Lasso estimator is defined as:

▪ መ𝛽𝜆 = 𝑎𝑟𝑔min
𝛽∈𝑅𝑝

( 𝑌 − 𝑋𝛽 2
2 + 𝜆 𝛽 1) = 𝑎𝑟𝑔 min

𝛽 1≤𝑐
𝑌 − 𝑋𝛽 2

2

for some 𝑐 that depends on 𝜆.

▪ For 𝜆 = 0, we obtain OLS. Otherwise we obtain a biased 

estimator than in most cases outperforms the OLS
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Shrinkage Methods
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Shrinkage Methods – geometrical interpretation
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Shrinkage Methods

▪ For both estimators, estimators for 𝛽 coefficients will be now 

bounded, which means that also the variance of the 

estimates stays controlled

▪ How to choose the right 𝜆? Cross validation!
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Model selection

▪ Ridge estimator will almost surely not set any estimated 

coefficients to zero because of its L2 geometry

▪ On the other hand, that is exactly what happens with Lasso 

estimates, because of the L1 norm. 

▪ The larger the 𝜆 the more coefficients are set to 0.

▪ So Lasso performs model selection and estimation at the 

same time
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Example – Prostate data

▪ The more you increase 𝜆, the smaller the estimated coefficients are

▪ Ridge estimated coefficients:
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Example – Prostate data

▪ The more you increase 𝜆, the smaller the estimated coefficients are

▪ Lasso estimated coefficients: here they are set to 0 for large 𝜆
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Generalized linear models (GLM)



GLM

▪ Generalized linear models (GLM) are a natural extension of linear models

▪ Response variable is now function of a linear combination of regressors

▪ Response variable does not have to be distributed normally anymore, it can 

take on of the distributions from the exponential family: Bernoulli, Binomial, 

Poisson, Gamma, Exponential

▪ GLMs are widely used in insurance industry and are ideally suited for the 

analysis of the non-normal data, that is commonly encountered in insurance.
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GLM

▪ More formally: 𝑌𝑖 ∈ 𝑅 - response variable, 𝑋𝑖 ∈ 𝑅𝑝 - regressors

▪ Linear regression: 𝐸(𝑌𝑖ห𝑋𝑖) = 𝛽′𝑋𝑖 and ෡𝑌𝑖 = መ𝛽′𝑋𝑖 .
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GLM

▪ But what if 𝑌𝑖 is a count variable, like the number of claims? 

▪ Assume a Poisson distribution for each 𝑌𝑖, but with a (potentially) different 

parameter 𝜆𝑖 > 0. Each customer has different frequency of claims. 

▪ We want to model 𝑌𝑖 in terms of 𝑋𝑖.
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GLM - Poisson regression

▪ We know that

𝑃(𝑌𝑖 = 𝑦ห𝜆𝑖) = (𝑒−𝜆𝑖𝜆𝑖
𝑦)/𝑦! for each 𝑦 ∈ 0,1,2,… .

▪ Also 𝐸 𝑌𝑖ห𝑋𝑖 = 𝜆𝑖. We want to model 𝜆𝑖 in terms of 𝛽′𝑋𝑖. Since 𝜆𝑖 > 0, it makes 

sense to do the following parametrization 

𝐸 𝑌𝑖ห𝑋𝑖 = 𝜆𝑖 = 𝑒𝛽
′𝑋𝑖

▪ Estimator: ෡𝑌𝑖 = 𝑒
෡𝛽′𝑋𝑖 = 𝑒

෡𝛽1
′𝑋𝑖1 ⋯𝑒

෡𝛽𝑝
′𝑋𝑖𝑝.

▪ GLM: a generalization of this, to also allow for other distributions in the exponential 

family: Normal, Exponential, Gamma, Bernoulli, Binomial, etc.

Ivana Milović

Multiplicative 

structure
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GLM - Model choice

Ivana Milović

Source: Willis Towers Watson
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GLM

Ivana Milović

▪ Generalized Linear Models serve as the industry standard for non-life insurance 
pricing
➢ Multiplicative output remains understandable also for non-actuaries

➢ Range of professional insurance software dedicated to GLM

➢ GLM is also possible in, for example, R

▪ Burning costs are defined as Frequency × Severity

▪ One can model the average frequency of claims,  the average claim amounts 
(severity) or (directly) the average burning costs

▪ Burning costs are then the basis for the (net) risk premium
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Criteria for GLM

Ivana Milović

▪ Portfolio size
➢ 150.000 exposure rows is seen as a minimum
➢ A significant number of claims is required as well

▪ Homogeneity of the risks in the portfolio

▪ Possibility to segment the risks
➢ Available risk factors

▪ Alternative methods
➢ Other pricing techniques
➢ Flat premium or premium influenced by one risk factor
➢ Individual underwriting

Often these criteria are met for a part of, but not for the full portfolio
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Pricing Process



Risk Modelling Process

Ivana Milović

Data preparation

Initial Analysis

GLM 

possible

?

GLM analysis
Simplified Pricing 

Method

Net risk 

premium

Yes No

Data extraction

Core System
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You could end up with a multitude of models

Ivana Milović

Frequency

Material Damage

Bodily injury attritional

Bodily injury large

Severity Material Damage

Bodily injury attritional

Separate models

possible for

private persons, 

fleets, leasing, etc

In this example

the severity of

large BI claims is

not modelled, but 

taken as a fixed

amount per claim

And this is just for

passenger cars!

Example: MTPL
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Validation of a GLM model

Ivana Milović

▪ Split the dataset in two
▪ Usually a 80-20% split or out-of-time
▪ Check how the model performs on unseen data
▪ Avoid overfitting 

▪ Significance tests
▪ Significance of a parameter in the model
▪ Significance of levels of a parameter against each other (how granular should a 

variable be)

▪ Temporal stability
▪ To be significant, an effect must be stable over the years

▪ Residual analysis
▪ To test the distribution  
▪ On real data no distribution works perfectly
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Combining Risk Models

Ivana Milović

▪ In the end we need to deliver a final risk premium
➢ We should combine all models we made

➢ Necessary to understand the total effect

▪ Result: net risk premium!
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From net risk premium to gross risk premium 

Ivana Milović

▪ A whole range of effects is to be added 
to the net risk premium

▪ Most loadings will be added through an 
increase in the intercept, but there are 
other possibilities

▪ Loading for discounts to be added

Gross Risk Premium
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Additional Topics - Interactions



Interactions and GLM

▪ An interaction effect exists when the effect of an independent variable on a 

dependent variable changes, depending on the value(s) of one or more other 

independent variables

▪ In that case an interaction term(s) has to be added to the model

▪ Example: gene A and gene B may contribute to developing a certain disease, 

but in combination they are fatal 

Ivana Milović 106



Interactions and GLM

▪ The problem? GLM models do not detect interactions automatically

▪ Then can be added to the model, but this has to be done ‘manually’

▪ Example taken from:
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Interactions and GLM
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Interactions and GLM

▪ In this example: there is an interaction of age and engine power 

▪ 𝑨𝒈𝒆 ≥ 𝟔𝟎 𝒂𝒏𝒅 𝑬𝒏𝒈𝒊𝒏𝒆 𝑷𝒐𝒘𝒆𝒓 ≥ 𝟓𝟎

▪ But if this effect is not noticed and included in the model, the GLM fit is poor
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Interactions and GLM
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Machine Learning



Boosting

▪ But many machine learning algorithms can automatically capture these 

effects

▪ Let us take Gradient Boosting Trees for example

▪ How does this algorithm work?

▪ Let us present some basics
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Tree based methods

▪ Tree-based methods partition the feature space into a set of rectangles and then fit a 

simple model (typically a constant) in each region

▪ Consider a regression problem with continuous response 𝑌 and continuous regressors 

𝑋1, 𝑋2 ∈ (0,1). 

▪ For example, this partition is simple but cannot be obtained by recursive binary splitting, 

i.e. represented by a tree. 
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Tree based methods

▪ So, let us restrict our attention to recursive binary partitions, like this one:

▪ First split the space into two regions and model the response by the mean of Y in 

each region. Choose the split variable and split-point to achieve the optimal split. 

▪ Then one or both regions are further split in the same fashion iteratively until some 

stopping rule is applied.
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Tree based methods

▪ The corresponding regression model predicts Y with a constant 𝑐𝑚 if the inputs 

X are in region 𝑅𝑚, i.e.
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Tree based methods

▪ These trees can now further be used for boosting

▪ What is boosting?
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Boosting

▪ Gradient boosting is one of the most powerful techniques for building predictive 

models. It is proven successful in many areas and is one of the leading methods 

for winning Kaggle competitions
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Boosting

▪ In general: models can be fitted to data individually or combined in an 

ensemble – a combination of simple individual models (usually trees) that 

together create a more powerful model

▪ Boosting is a method that builds the model in a stage-wise fashion. 

▪ It starts by fitting an initial model. 

▪ The second model focuses then on accurately predicting the cases where 

the first model performed badly

▪ The third model focuses on correcting the faults of the previous stage, etc.  

Ivana Milović 118



Boosting

▪ Here we do not fit one big decision tree to the model, because this can 

easily lead to overfitting

▪ Instead, the boosting algorithm learns slowly

▪ At each step we fit a decision tree to the residuals from the previous 

model

▪ Then new tree is then added to the model
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Boosting
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▪ Example: data to be fitted



Boosting
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Boosting
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Boosting
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Boosting

▪ Usually the trees are rather small, but they should be deep enough to 

capture interactions. Number of splits = 2  is already enough to catch first-

order interactions

▪ There are several parameters that need to be chosen: the number of trees, 

the number of splits in each tree and the learning rate of the algorithm 

(usually 0.1 or 0.01)

▪ For the number of trees cross-validation is used 
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Example

▪ Back to our example

▪ Remember that GLM could not ‘recognize’ the interaction between age and 

engine power

▪ But GBMs do, provided that the tuning parameter have be carefully selected
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Example
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Method comparison



GLM vs Machine Learning

▪ The problem with these kind of algorithms is that the interpretation is almost 

completely lost

▪ It is very unlikely that such models will be approved by regulators, at least in the 

majority of countries

▪ And even if they are, then the insurance company runs into the risk of 

reputational loss, in case some of the ethical problems discussed before 

emerge
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GLM vs Machine Learning

▪ Also the actuaries want to understand their models and not use black-box 

alternatives

▪ So, GLMs will probably not be replaced by Machine Learning algorithms in the 

near future

▪ But they can assist the actuaries in spotting interactions, as well as variable 

significance or perform clustering tasks
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GLM vs Machine Learning
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GLM vs Machine Learning

▪ Examples of clustering can be brand or region clustering. Here the black-box 

nature of the models is not so important, because the model results can usually 

easily be validated
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