

Lecture contents:

1. Overview of the different (m)RNA modification

2. Our current data on the role of m6A demethylase in mRNA metabolism

#### Gene expression in eukaryotes



# Phylogenetic distribution of modified nucleosides in RNA originating from the three domains of life



- Cellular RNAs are post-transcriptionally modified in all life kingdoms
- RNA modification alters physico-chemical properties of nucleotides, including their conformation, polarity, hydrophobicity, chemical reactivity and base-pairing interactions
- RNA modification is performed by highly specific and regulated enzymatic mechanisms involving pure protein enzymes and catalytic RNA–protein complexes (RNPs)
- RNA modification is important for regulation of gene expression
- Transcription-wide RNA modification is dynamic and regulated cellular process
- Deregulation of RNA modification may lead to important human pathologies

#### Types of RNA modifications

- 1. RNA editing insertional & deletional
- 2. Base modifications

multiple different types substitutional RNA editing

#### Types of RNA modifications

- 1. RNA editing insertional & deletional
- 2. Base modifications

multiple different types substitutional RNA editing

### Types of RNA editing

#### Insertion/deletion

## U

Insertion or deletion



## Trypanosomes have only one mitochondrion



### A unique mitochondrial DNA architecture: The kinetoplast

#### human



#### trypanosome







### RNA editing by trypanosomes: The mystery of missing genes

mitochondrial gene

| Human       |  |
|-------------|--|
| Yeast       |  |
| Trypanosome |  |

DNA

ACCAGAGAGGAGAGUGAGGAAAGGCG

mRNA

#### *T. brucei* ATPase 6 mRNA

edited

| MFLF                        | F        | FCD                  |
|-----------------------------|----------|----------------------|
| LFWLRLLLCMYYCVW             | S R      | L C F                |
| IVYFNCLMLIFDFLI             | L F      | C L F                |
| DLYLFVGLC LFLLI             | LW       | FML                  |
| FNLYSLILYYCITYI             | L        | N L Y                |
| LLFCIVFLLYIAFLF             | FL       | FCF                  |
| L C D F F L F N N L L V G D | S        | FMD                  |
| VFFI RFLLCFLECF             | S L      | LCR                  |
| CLSTFLRLFCNLLSS             | S H      | FLL                  |
| LMFFDFFYFIFVFFF             | <b>W</b> | CFL                  |
| LLIYFIYFCVLFLFI             | I L      | CVF                  |
| IFVGFIC RHIT V              | I Y      | F L <mark>ter</mark> |

### Types of RNA editing

#### **Insertion/deletion**

## U

Insertion or deletion

Conversion

Α

C

#### Types of RNA modifications

- 1. RNA editing insertional & deletional
- 2. Base modifications

many different once substitutional RNA editing

#### Substitutional RNA editing



#### Substitutional RNA editing

#### A to I ADARs, ADATs (adenosine deaminases acting on RNA/tRNA

#### C to U CDARs (Apobec) (cytosine deaminases acting on RNA)

#### C to U editing often forms additional stop codons



#### **Apolipoprotein B-100**

4563 amino acids <u>Function</u>: transport of cholesterol in the blood

#### Apolipoprotein B-48

2152 amino acids <u>Function</u>: absorption of lipids from the intestine

#### Organization of the glutamate-gated ion channel receptors



#### Landscape of A-to-I RNA editing occurrence and impact



Maas, Stefan(Sep 2013) A-to-I RNA Editing and Human Genetic Disease. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0024625]

#### Types of RNA modifications

- 1. RNA editing insertional & deletional
- 2. Base modifications

multiple different types substitutional RNA editing

# Phylogenetic distribution of modified nucleosides in RNA originating from the three domains of life



Motorin, Yuri(May 2015) RNA Modification. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0000528.pub3]

#### **RNA** modifications



# Cellular localisation of RNA:modification enzymes and coordination between RNA (tRNA) maturation and modification



#### Diversity of nucleotide methylation

Methylation sites on the chemical structures of the four major ribonucleotides, inosine, and pseudouridine.

Multiple modifications may occur sequentially on a single nucleotide.



Motorin and Grosjean. tRNA modification. In: Encyclopedia of Life Sciences. 2005

Known sites of RNA methylation





The RNA modification database provides a comprehensive listing of posttranscriptionally modified nucleosides from RNA and is maintained as an updated version of the initial printed report [1].

The chemical composition of an RNA molecule allows for its inherent ability to play many roles within biological systems. This ability is further enhanced through the site selected addition of the 109 currently known post-transcriptional modifications catalyzed by specific RNA modification enzymes [2]. These naturally-occurring modifications are found in all three major RNA species (tRNA, mRNA and rRNA) in all three primary phylogenetic domains (archaea, bacteria and eukarya) as well as in a handful of other RNA species such as snRNA and miRNA [3,4,5,6]. Both the chemical and structural diversity and extent of posttranscriptional modification in RNA is remarkable [1,7,8,9], with 109 different modified nucleosides presently known. The modifications are one of the most evolutionarily conserved properties of RNAs. Due in large part to comprehensive investigations into the structural and functional roles of modified nucleosides in tRNA, significant advancements have been achieved in our understanding of the various roles played by these modifications [6,10,11,12,13,14]. The need to provide a comprehensive, searchable database to house this wealth of knowledge led to the first iteration of The RNA Modification Database (RNAMDB) in 1994 [1].

The current version of the database, now housed at The RNA Institute at the State University of New York at Albany, contains all naturally-occurring, RNA-derived modified ribonucleosides for which the chemical structures are known. They include those from established sequence positions, as well as those detected or characterized from hydrolysates of RNA. The RNAMDB provides a user-friendly, searchable interface that directs the user to a detailed information page for each database entry. The information provided permits access to the modified nucleoside literature through provision of both computer-searchable Chemical Abstracts registry numbers and key literature citations.

This database also provides an historical record of the initial reports of occurrence, characterization and chemical synthesis of modified nucleosides from RNA. The reader is referred to the earlier publication [1] and to paragraphs below for discussion of selected topics relevant to the database.

Users are invited to submit comments regarding existing entries, including errors and omissions, as well as suggestions for improvements to the following email address:

| ost Visited -  | rna.albany.edu/mods/ | tp://support.pol G Google 🛞 .<br>UTTE<br>New YORK                                                                                                 | AppleCare Service 🧯 Apple -                                                                                                                                                                            |                                                                                  | C Q Search<br>Amazon News - RNA Club - Home                                                                                                            | ☆ 自 ♥ ♣ ♠ |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Home           | Introduction         | Search Modifications                                                                                                                              | The RNA Mo                                                                                                                                                                                             | dification Database                                                              |                                                                                                                                                        |           |
|                |                      |                                                                                                                                                   | Mod                                                                                                                                                                                                    | ifications                                                                       |                                                                                                                                                        |           |
| Filter Options |                      |                                                                                                                                                   |                                                                                                                                                                                                        | Output Options                                                                   |                                                                                                                                                        |           |
|                |                      | Base type                                                                                                                                         | RNA Source                                                                                                                                                                                             | <b>Phylogenetic Occurrence</b>                                                   | output options                                                                                                                                         |           |
|                |                      |                                                                                                                                                   | ● From all<br>●tRNA                                                                                                                                                                                    |                                                                                  | Show common name                                                                                                                                       |           |
|                |                      | <ul> <li>All</li> <li>Adenosines</li> <li>Inosines</li> <li>Cytidines</li> <li>Guanosines</li> <li>7-deazaguanosines</li> <li>Uridines</li> </ul> | <ul> <li>rRNA (all)</li> <li>rRNA (SSU)</li> <li>rRNA (LSU)</li> <li>rRNA (5s)</li> <li>rRNA (5.8s)</li> <li>mRNA</li> <li>tmRNA</li> <li>snRNA</li> <li>Chromosomal RNA</li> <li>Other RNA</li> </ul> | <ul> <li>From all</li> <li>Archaea</li> <li>Bacteria</li> <li>Eukarya</li> </ul> | <ul> <li>Show structure</li> <li>Show mass value</li> <li>Base type</li> <li>Nulceoside name</li> <li>Nucleoside mass</li> <li>Entry number</li> </ul> |           |

| #         | Symbol                            | Common Name                                                       |
|-----------|-----------------------------------|-------------------------------------------------------------------|
| <u>1</u>  | m¹A                               | 1-methyladenosine                                                 |
| <u>2</u>  | m²A                               | 2-methyladenosine                                                 |
| <u>3</u>  | m <sup>6</sup> A                  | N <sup>6</sup> -methyladenosine                                   |
| <u>4</u>  | Am                                | 2'-O-methyladenosine                                              |
| <u>5</u>  | ms <sup>2</sup> m <sup>6</sup> A  | 2-methylthio-N <sup>6</sup> -methyladenosine                      |
| <u>6</u>  | i <sup>6</sup> A                  | N <sup>6</sup> -isopentenyladenosine                              |
| Z         | ms <sup>2</sup> i <sup>6</sup> A  | 2-methylthio-N <sup>6</sup> -isopentenyladenosine                 |
| <u>8</u>  | io <sup>6</sup> A                 | N <sup>6</sup> -(cis-hydroxyisopentenyl)adenosine                 |
| <u>9</u>  | ms <sup>2</sup> io <sup>6</sup> A | 2-methylthio-N <sup>6</sup> -(cis-hydroxyisopentenyl) adenosine   |
| <u>10</u> | g <sup>6</sup> A                  | N <sup>6</sup> -glycinylcarbamoyladenosine                        |
| <u>11</u> | t <sup>6</sup> A                  | N <sup>6</sup> -threonylcarbamoyladenosine                        |
| <u>12</u> | ms <sup>2</sup> t <sup>6</sup> A  | 2-methylthio-N <sup>6</sup> -threonyl carbamoyladenosine          |
| <u>13</u> | m <sup>6</sup> t <sup>6</sup> A   | N <sup>6</sup> -methyl-N <sup>6</sup> -threonylcarbamoyladenosine |
| <u>14</u> | hn <sup>6</sup> A                 | N <sup>6</sup> -hydroxynorvalylcarbamoyladenosine                 |
| <u>15</u> | ms <sup>2</sup> hn <sup>6</sup> A | 2-methylthio-N <sup>6</sup> -hydroxynorvalyl carbamoyladenosine   |
| <u>16</u> | Ar(p)                             | 2'-O-ribosyladenosine (phosphate)                                 |
| <u>17</u> | I                                 | inosine                                                           |
| <u>18</u> | m¹I                               | 1-methylinosine                                                   |
| <u>19</u> | m¹Im                              | 1,2'-O-dimethylinosine                                            |
| <u>20</u> | m <sup>3</sup> C                  | 3-methylcytidine                                                  |
| <u>21</u> | m⁵C                               | 5-methylcytidine                                                  |
| <u>22</u> | Cm                                | 2'-O-methylcytidine                                               |

| s <sup>2</sup> C   | 2-thiocytidine                                                                                                                                                                                                                                                                                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ac <sup>4</sup> C  | N <sup>4</sup> -acetylcytidine                                                                                                                                                                                                                                                                            |
| <sup>5</sup> C     | 5-formylcytidine                                                                                                                                                                                                                                                                                          |
| m⁵Cm               | 5,2'-O-dimethylcytidine                                                                                                                                                                                                                                                                                   |
| ac <sup>4</sup> Cm | N <sup>4</sup> -acetyl-2'-O-methylcytidine                                                                                                                                                                                                                                                                |
| k <sup>2</sup> C   | lysidine                                                                                                                                                                                                                                                                                                  |
| m <sup>1</sup> G   | 1-methylguanosine                                                                                                                                                                                                                                                                                         |
| m²G                | N <sup>2</sup> -methylguanosine                                                                                                                                                                                                                                                                           |
| m <sup>7</sup> G   | 7-methylguanosine                                                                                                                                                                                                                                                                                         |
| Gm                 | 2'-O-methylguanosine                                                                                                                                                                                                                                                                                      |
| m² <sub>2</sub> G  | N <sup>2</sup> ,N <sup>2</sup> -dimethylguanosine                                                                                                                                                                                                                                                         |
| m²Gm               | N <sup>2</sup> ,2'-O-dimethylguanosine                                                                                                                                                                                                                                                                    |
| m²₂Gm              | N <sup>2</sup> ,N <sup>2</sup> ,2'-O-trimethylguanosine                                                                                                                                                                                                                                                   |
| Gr(p)              | 2'-O-ribosylguanosine (phosphate)                                                                                                                                                                                                                                                                         |
| yW                 | wybutosine                                                                                                                                                                                                                                                                                                |
| o₂yW               | peroxywybutosine                                                                                                                                                                                                                                                                                          |
| ОНуѠ               | hydroxywybutosine                                                                                                                                                                                                                                                                                         |
| OHyW*              | undermodified hydroxywybutosine                                                                                                                                                                                                                                                                           |
| mG                 | wyosine                                                                                                                                                                                                                                                                                                   |
| mimG               | methylwyosine                                                                                                                                                                                                                                                                                             |
| Q                  | queuosine                                                                                                                                                                                                                                                                                                 |
| οQ                 | epoxyqueuosine                                                                                                                                                                                                                                                                                            |
| galQ               | galactosyl-queuosine                                                                                                                                                                                                                                                                                      |
|                    | n <sup>5</sup> Cm<br>ac <sup>4</sup> Cm<br>c <sup>2</sup> C<br>n <sup>1</sup> G<br>n <sup>2</sup> G<br>n <sup>7</sup> G<br>Sm<br>n <sup>2</sup> <sub>2</sub> G<br>n <sup>2</sup> <sub>2</sub> G<br>n <sup>2</sup> <sub>2</sub> G<br>Sr(p)<br>/W<br>DayW<br>DhyW<br>DhyW<br>DhyW*<br>mG<br>nimG<br>Q<br>DQ |

#### The role of m6A



#### **Epigenetic modifications**



Adapted from Fu, Y. et al, Nature Rev. Genet. (2014)

#### The players in the m<sup>6</sup>A pathway



Gerken et Al., *Science*, 2007; Dominissimi et Al., *Nature*, 2012; Meyer et Al., *Cell*, 2012;, Liu et Al., *Nat. Chem. Biol.*, 2014; Wang et Al., *Nature*, 2014, Pendleton et al., Cell 2017, Warda et al., EMBO Rep 2017

# The m<sup>6</sup>A and the related factors affect numerous physiological functions

Translation regulation and mRNA decay:

Germ cell maturation, cell differentiation and development

Stress response

May contribute to cancer, infections and other diseases



#### m6A deposition is a reversible modification



Gerken et Al., *Science*, 2007; Dominissimi et Al., *Nature*, 2012; Meyer et Al., *Cell*, 2012; Liu et Al., *Nat. Chem. Biol.*, 2014; Wang et Al., *Nature*, 2014

# METHYLATION: the most prevalent mRNA modification



# Reverse transcription-based techniques for detection of modified nucleotides



#### Antibody-based detection of m6A


## N6-methyladenosine is enriched at stop codon at DRACH motif



### N6-methyladenosine is recognized by sensing proteins in two modes



### Dynamic RNA Modifications in Gene Expression Regulation



## The nuclear roles of m<sup>6</sup>A



Covelo-Molares et al., 2018

## N6-methyladenosine modification serves multiple functions



RNA stability and sequestering to P-bodies RNA export alternative splicing miRNA processing translation efficiency

How is methylation at stop codon achieved ?

Why are some DRACH sites methylated and other not?

Which factors are able to distinguish methylated and nonmethylated RNA ?

What is the function of demethylases ?

## m6A is enriched at stop codon at DRACH motif

>18 000 methylation sites1-3 per mRNAappear in clusters

#### Conserved motif **DRACH** D=A/G/U; R=G/A, H=A/C/U





## mRNA methylation is a reversible process



Gerken et Al., *Science*, 2007; Dominissimi et Al., *Nature*, 2012; Meyer et Al., *Cell*, 2012; Liu et Al., *Nat. Chem. Biol.*, 2014; Wang et Al., *Nature*, 2014

#### AlkBH family of Fe(II)/ $\alpha$ -ketoglutarate-dependent dioxygenases



Adapted from Muller and Hausinger, 2015

|                               | FTO                                                | AlkBH5                          |
|-------------------------------|----------------------------------------------------|---------------------------------|
| Substrate                     | m <sup>6</sup> A and m <sup>6</sup> A <sub>m</sub> | m <sup>6</sup> A                |
| Oxidative<br>demethylation    | With 2 detectable<br>intermediates                 | Without stable<br>intermediates |
| Highest expression            | Brain                                              | Testis                          |
| K.O. mouse model<br>phenotype | Reduce adipose<br>tissue                           | Aberrant<br>spermatogenesis     |

Fu Y, et al. *Nature Com.*, 2013; Jia et al., *Nat. Chem. Biol.*, 2011; Mauer, J. et al., *Nature*, 2017; Zheng, et al., *Mol. Cell*, 2013; Fsicher, et al., *Nature*, 2009 SNPs in human:

SNP hotspot in FTO intron correlates with diabetes and obesity

1 in 6 adults are homozygous for the risk allele (Frayling et al., 2007, Science)

higher weight (≥3 kg compared to average) and 1,67-fold increased odds of developing obesity (Frayling et al., 2007, Science)

## Mouse models:

FTO over-expression (Church et al.,2010, *Nature Genetics*)



FTO knockout (Fischer et al., 2009,*Nature*) FTO catalytical mutant (Church et al., 2009, *PLoS Genetics*)



## **Our FTO results**

- 1. FTO binds pre-mRNAs, it likely functions co-transcriptionally.
- 2. FTO binding is not enriched around the RRACH motif and correlates with adenosine methylation positions at TSS.
- 3. FTO appears to play a role in 3' end processing.
- 4. FTO demethylation activity facilitates exon inclusion in a subset of mRNAs.



Bartosovic et al., 2017

## FTO specificity for m<sup>6</sup>A versus m<sup>6</sup>A<sub>m</sub>



#### **RESEARCH ARTICLE SUMMARY**

**MOLECULAR BIOLOGY** 

## Cap-specific terminal *N*<sup>6</sup>-methylation of RNA by an RNA polymerase II-associated methyltransferase

Shinichiro Akichika\*, Seiichi Hirano\*, Yuichi Shichino, Takeo Suzuki, Hiroshi Nishimasu, Ryuichiro Ishitani, Ai Sugita, Yutaka Hirose, Shintaro Iwasaki, Osamu Nureki†, Tsutomu Suzuki†

Resource

# **Molecular Cell**

Identification of the m<sup>6</sup>Am Methyltransferase PCIF1 Reveals the Location and Functions of m<sup>6</sup>Am in the Transcriptome

