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Enhancing spatial accuracy of mobile phone data using
multi-temporal dasymetric interpolation
Olle Järv , Henrikki Tenkanen and Tuuli Toivonen

Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland

ABSTRACT
Novel digital data sources allow us to attain enhanced knowledge
about locations and mobilities of people in space and time.
Already a fast-growing body of literature demonstrates the applic-
ability and feasibility of mobile phone-based data in social
sciences for considering mobile devices as proxies for people.
However, the implementation of such data imposes many theore-
tical and methodological challenges. One major issue is the
uneven spatial resolution of mobile phone data due to the spatial
configuration of mobile network base stations and its spatial
interpolation. To date, different interpolation techniques are
applied to transform mobile phone data into other spatial divi-
sions. However, these do not consider the temporality and societal
context that shapes the human presence and mobility in space
and time. The paper aims, first, to contribute to mobile phone-
based research by addressing the need to give more attention to
the spatial interpolation of given data, and further by proposing a
dasymetric interpolation approach to enhance the spatial accuracy
of mobile phone data. Second, it contributes to population mod-
elling research by combining spatial, temporal and volumetric
dasymetric mapping and integrating it with mobile phone data.
In doing so, the paper presents a generic conceptual framework of
a multi-temporal function-based dasymetric (MFD) interpolation
method for mobile phone data. Empirical results demonstrate how
the proposed interpolation method can improve the spatial accu-
racy of both night-time and daytime population distributions
derived from different mobile phone data sets by taking advan-
tage of ancillary data sources. The proposed interpolation method
can be applied for both location- and person-based research, and
is a fruitful starting point for improving the spatial interpolation
methods for mobile phone data. We share the implementation of
our method in GitHub as open access Python code.
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1. Introduction

To better understand how societies function and to improve social justice and environ-
mental sustainability, we need to attain enhanced spatio-temporal knowledge about the
locations and mobilities of people (Hägerstrand 1970, Sheller and Urry 2006, Cresswell
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and Merriman 2011, Kwan 2013). This knowledge has become possible due to the global
adoption of mobile information and communication devices in the age of the Big Data,
while human interactions through mobile devices create digital footprints of people in
space and time (Kitchin 2014). Thus, ubiquitous mobile phones are considered as proxies
for people (Asakura and Hato 2004, González et al. 2008, Ahas et al. 2010).

For example, passively collected time-stamped and location-aware information on
mobile phone use, such as call detail records (CDRs), is rapidly enhancing our under-
standing about individual human mobility (Yuan et al. 2012, Järv et al. 2014). Such data
is applied to understand the relation between human mobility and social networks
(Phithakkitnukoon et al. 2012), ethnic differences in human activity spaces (Järv et al.
2015) and for estimating travel times to public facilities (Wesolowski et al. 2015). At the
population level, flourishing literature demonstrates how CDR data is used for investi-
gating spatial distributions and temporal dynamics of local and national population
(Reades et al. 2009, Kang et al. 2012, Deville et al. 2014), seasonal migration patterns
(Silm and Ahas 2010), spatial structures of cities (Louail et al. 2014), traffic flow (Wang
et al. 2012), disease risks (Wesolowski et al. 2012) and socio-economic levels of the
population (Soto et al. 2011, Blumenstock et al. 2015).

However, investigation of human presence and mobility based on CDR data imposes
theoretical and methodological challenges. For example, one challenging issue is repre-
senting the whole population while not everyone is using mobile phones for different
reasons (e.g. young children, elderly). Socio-economic biases may exist in a sample while
network operators have different segmentation strategies and service costs. Phone
users’ call activity habits and patterns vary in space and time according to individuals’
socio-economic characteristics, preferences, lifestyle, habits and work attributes (Castells
et al. 2007). Also, authority (legislation) and environmental (physical extent of mobile
network) domains may limit where and when mobile phones can be used. These aspects
may influence research findings derived from CDR data while creating spatial, temporal
and socio-economic biases at both the individual and aggregated levels (Yuan et al.
2012, Wesolowski et al. 2013, Järv et al. 2014, Zhao et al. 2016).

One important methodological challenge is the spatial perspective of CDR data since the
spatial accuracy of given data depends on the spatial distribution of mobile network base
stations, which is not equally distributed in space and changes over time. Furthermore,
while more advanced interpolation techniques are applied (e.g. Louail et al. 2014, Pei et al.
2014), they do not consider the environmental and societal contexts that shape the human
presence and mobility in space and time. To obtain more precise spatio-temporal knowl-
edge about human presence and mobility, we need to develop a spatial interpolation
technique for CDR data that considers the social structures and human practices.

This paper seeks to contribute to mobile phone-based research in the social sciences
by addressing the need to give more attention to the spatial perspective of passively
collected mobile phone data (e.g. CDR data) and by overcoming the uneven spatial
accuracy problem in base station coverage areas. We suggest applying a dasymetric
interpolation approach that is well known in population mapping studies. With this
paper we aim: (1) to put forward a generic conceptual framework for a multi-temporal
function-based dasymetric (MFD) interpolation method for mobile phone data; and (2)
to empirically investigate how and to what extent the proposed method improves a
night-time and daytime population distribution derived from mobile phone data. In
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doing so, this paper also contributes to dasymetric population modelling by combining
spatial, temporal and volumetric mapping techniques while incorporating a function-
based population allocation with mobile phone data. To our knowledge, this is the first
attempt to comprehensively apply a dasymetric technique for interpolating mobile
phone data.

Next, we provide a brief overview on how the spatial perspective is considered in
passively collected mobile phone-based research. We then introduce a dasymetric
interpolation approach and put forward the conceptual framework of the proposed
dasymetric method and demonstrate the empirical results in the case of Tallinn, Estonia.
Finally, we discuss the method, obtained outcomes and future steps.

2. Background and literature review

2.1. The spatial perspective of passively collected mobile phone data

To a large extent, the spatial accuracy of passively collected mobile phone data, such as
CDR data, is determined by the locations of base stations – the geographical location of
each mobile phone use is allocated to the base station that provided the network signal.
Hence, the spatial accuracy of data corresponds to the coverage areas of a mobile
network base station, which is spatially not fixed and varies according to the density
of base stations (for some exceptions, see, e.g. Calabrese et al. 2013). The simplest way
to examine given data from spatial perspective is to use (aggregated) geographic
locations of base stations (antennae) as point-based units. Latter approach is widely
applied in individual mobility studies (González et al. 2008, Yuan et al. 2012, Järv et al.
2014) and its relation to social phenomena and processes (Phithakkitnukoon et al. 2012,
Demissie et al. 2013, Järv et al. 2015, Wesolowski et al. 2015). However, this type of data
is difficult to integrate and validate with other data sources.

Certainly, CDR data is further assigned to discrete areal polygons using different techni-
ques. Most commonly, a spatial overlay technique is used to attribute given data to
predefined spatial (e.g. administrative and statistical) units given the locations of a base
station (Ahas et al. 2010, Wesolowski et al. 2012, Trasarti et al. 2015, Williams et al. 2015).
Conventional choropleth mapping allows for integrating and validating the mobile phone
data with other attribute data in a given spatial division. However, choropleth mapping
ignores the fact that: (1) the spatial distribution of base stations does not depend on
predefined spatial units – an administrative unit may have none or many base stations;
and (2) the spatial division of coverage areas and predefined spatial units does not utterly
coincide – a base station located at one predefined spatial unit may provide a mobile
network signal partly (or entirely) to other predefined units and thus represent CDR data
from an area that is larger than where the given base station is actually located.

Another widely applied technique is to interpolate the study area to theoretical
coverage areas (polygons) of a base station using a Voronoi tessellation (Delaunay
triangulation) technique in Euclidean space (e.g. Wang et al. 2012) with some exceptions
(see Iqbal et al. 2014, Jacobs-Crisioni et al. 2014). This way, station-based mobile phone
data can be attributed to spatial units indicating base stations’ coverage areas. The use
of Voronoi tessellation provides more accurate spatial distribution as compared to
previous approaches; however, the resulting spatial division is not compatible with
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other existing spatial divisions of administration and, hence, does not allow data
integration or validation with data in other spatial divisions. Moreover, the two overlay
techniques described above depend on the locations of base stations, and any changes
in the spatial configuration of a mobile network over time may create biases in both
longitudinal and repeated research.

The latter weaknesses can be overcome by applying a straightforward areal weight-
ing spatial interpolation technique; the spatial division of coverage areas and its attri-
butes are simply interpolated by areal intersection to desired spatial units such as
statistical grids (Candia et al. 2008, Louail et al. 2014) or administrative areas (Soto
et al. 2011, Deville et al. 2014). Areal weighting is also applied the other way round;
predefined spatial units and its attributes are interpolated into coverage areas of base
stations (Kang et al. 2012, Doyle et al. 2014). Indeed, using statistical grids or adminis-
trative areas enables data integration and validation with other data sources in any
spatial division. However, this method assumes that mobile phone data as a proxy for
people is equally distributed on a plane surface without considering temporality, envir-
onmental context or societal structures that shape human presence and mobility in
space and time.

Several attempts are made to apply more sophisticated spatial interpolation techni-
ques to enhance the spatial accuracy of mobile phone data within a coverage area of a
base station. Ratti et al. (2006) applied a neighbour linear interpolation method based on
centroids of a Voronoi polygon to represent the probable population in a raster surface.
Csáji et al. (2013) refined the spatial locations of people within each Voronoi polygon
based on the probability density calculation from the maximum likelihood estimation
and the signal decay of a base station. Similarly, Pei et al. (2014) applied a probabilistic
distribution approach to refine the spatial accuracy of people within each Voronoi
polygon to grid cells using the inverse distance weighting. Nevertheless, the given
sophisticated spatial interpolation techniques still assume space as a plane surface
and people in space as a function of the distance from a base station. To the authors’
knowledge, only in the supporting information in Deville et al. (2014) was there a
preliminary attempt made to apply the dasymetric technique by ancillary land-use
data to interpolating CDR data.

2.2. Dasymetric interpolation approach and the integration of time

In population research, several spatial interpolation methods are used to go beyond
aggregated and predefined census tract and administrative units for finer-scale spatial
resolution (Eicher and Brewer 2001, Mennis 2003, Langford 2006). Given the feasibility
and reliability of widely used dasymetric mapping, the dasymetric interpolation techni-
que is one of the best approaches for refining the spatial resolution of population data
(Wu et al. 2005, Mennis and Hultgren 2006). The dasymetric technique for refining
population distribution is successfully applied, for example, for studying tourism (Vaz
and Campos 2013), accessibility (Langford et al. 2008, Shannon 2014), risk exposures and
disaster management (Linard and Tatem 2012, Smith et al. 2014).

In general, the dasymetric spatial interpolation technique transforms population data
from one set of spatial units (source zones) into another spatial division (target zones)
using additional ancillary data sources – data that can be related directly or indirectly to
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the spatial presence of people for assisting the interpolation. Physical environmental
(land use, land cover and zonal data) information is widely used to extract a populated
area from a non-populated area and further conduct spatial weighting based on
selected attributes (Dobson et al. 2000, Ruther et al. 2015). Additional ancillary variables
considered in dasymetric mapping include the national mailing information (Langford
et al. 2008), addresses of businesses (Greger 2015), road network proximity and traffic
counts (Smith et al. 2014), points-of-interests (Bakillah et al. 2014), night-imagery
(Dobson et al. 2000), detailed cadastral maps (Maantay et al. 2007) and building func-
tions with vertical and volumetric information (Aubrecht et al. 2009, Greger 2015, Biljecki
et al. 2016).

In recent years, dasymetric interpolation techniques have witnessed fast development
given new data sources, improved statistical assessment for estimating accuracy, and
advancing multiple areal interpolation with relational data sources, 3D modelling and
spatio-temporal interpolation (see, e.g. Nagle et al. 2014, Ruther et al. 2015, Biljecki et al.
2016, Mennis 2016). Interestingly, the concept of the dasymetric interpolation technique
is well suited for integrating the temporal perspective (hourly, weekday and seasonal
rhythms) for population mapping (e.g. Martin et al. 2015, Mennis 2016). Temporally
sensitive multidimensional dasymetric interpolation modelling of a population based on
census data has already been elaborated upon since 2000 (Dobson et al. 2000, Aubrecht
et al. 2009). Since then, different conceptual frameworks have been proposed for
dynamic population distribution modelling while also distinguishing population sub-
groups, such as local residents, visitors and transit (Bhaduri et al. 2007, Aubrecht et al.
2014, Martin et al. 2015, Mennis 2016). In these studies, the spatial distribution of the
population is interpolated as a function of time, while the spatial layer is related to time-
dependent ancillary data sources about human presence and activities (e.g. time use
survey, activity travel diary).

However, these advanced dasymetric interpolation methods do not consider the
verticality of a built environment, and vice versa, spatially advanced building population
mapping methods do not consider temporality (Ural et al. 2011, Biljecki et al. 2016),
except a study by Greger (2015). In urbanised societies, the vertical dimension and
volumetric data about a built environment are two of the essential environmental
attributes that determine the spatial distribution of people (Ahola et al. 2007, Biljecki
et al. 2016).

Thus, we propose a conceptual framework of the MFD interpolation for mobile phone
data that also takes into account the verticality of a built environment, similar to Greger
(2015). This enables obtaining more accurate spatio-temporal information about human
presence and mobility derived from mobile phone data such as CDR, which increases
the applicability and reliability of given data.

3. The conceptual framework of an MFD interpolation for mobile phone
data

Since mobile phone data as a proxy for people is predominantly estimated by coverage
areas of a base station (or antennae) as source zones, we propose a generic MFD
interpolation method that first disaggregates the distribution of mobile phone data
within each coverage area, and then aggregates mobile phone data to the desired
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spatial division as target zones using different spatially and temporally sensitive ancillary
data sources (Figure 1). At minimum, three ancillary data sources are needed – a spatial
layer with land-cover data, volume (height) of built environment and time-dependent
human activity data.

In general, the MFD interpolation method for mobile phone data has five modelling
steps (Figure 2): (I) the preparation of a physical surface layer; (II) the spatial disaggrega-
tion of a physical surface layer by both source zones (i.e. coverage areas of a base

Figure 1. The representation of MFD interpolation method – point-based mobile phone data at base
station level (a) – is usually assigned to theoretical coverage areas of a base station as source zones
(b) and interpolated to target zones using simple areal weighting method (c). The proposed MFD
method disaggregates mobile phone data within each source zone using ancillary data (d) to
transform it to desired target zones (e).

Figure 2. The conceptual framework for the proposed MFD interpolation method for refining mobile
phone data as a proxy for people in five modelling steps.
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station) and target zone layers; (III) the integration of time-dependent human activity
data with a disaggregated physical surface layer; (IV) the integration of mobile phone
data with a disaggregated physical surface layer; and (V) the spatial aggregation of
disaggregated surface layer to desired target zones as the output of the MFD method. In
the MFD method, any desired spatial division can be used as target zones according to
any research need – statistical grid cells (as in this case study), census tracts, adminis-
trative units, transport analysis zones or any other spatial division. Next, each modelling
step is described in the following subsections.

3.1. The preparation of physical surface layer

First, the physical surface layer is prepared, where (1) the vertical dimension is
incorporated and (2) a functional attribute is assigned, which can be linked to
human activity data. The vertical dimension is essential since the verticality of a
built environment determines the population density whereas the best indicator is
the total floor area of a building (e.g. Biljecki et al. 2016). The method is flexible
regarding the vertical dimension, and input data can be either ready-made data or
estimated (from building footprints and heights) for the buildings’ total floor area
(m2) or volume (m3).

The activity function attribute of each spatial unit enables linking the estimated
human presence by activity type in time with the physical surface layer. The method
is flexible regarding the detail level of activity function classification as long as it is
possible to link with time usage of people by classified human activity data (Eurostat
2009, UNSD 2016) and corresponds to available input data and research needs. We
propose to apply six activity function types – residential, work and school, retail and
service, transport, restricted area and other areas, since these types have distinguished
temporal usage patterns.

The required physical surface layer may be already available in case of detail cadastral
data, including the vertical dimension or 3D models on a built environment (Biljecki et al.
2016). However, there are several ways to prepare a given layer, for example, by
integrating land-use and/or land-cover data with building information; building foot-
prints may be derived from cadastral maps, satellite imagery or volunteered geographic
information databases such as OpenStreetMap (OSM) or GoogleMaps. Building height
can be derived from areal imagery and remote sensing such as LIDAR measurements
(Alahmadi et al. 2013). While information about the vertical dimension at building level
is not available, more rough estimates may be applied such as the average height of a
city block or a neighbourhood.

Building functions related to human activity types in the spatial layer can be further
enhanced with additional crowdsourced data such as OSM and online address (business)
registers (Greger 2015), and even assign several functionalities to a building if such data
is available. Finally, each spatial unit in the physical surface layer includes three attri-
butes: activity function type a; surface unit type (building; non-building) u; and a vertical
dimension (number of floors; height).
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3.2. The spatial disaggregation by source and target zones

In the second step of the MFD method, two spatial layers are applied in addition to the
physical surface layer – the spatial division of mobile phone data as source zones and
the spatial division of desired spatial units as target zones (Figure 1). The spatial division
of mobile phone data is usually represented by the theoretical coverage areas of a base
station using a Voronoi tessellation method. The desired spatial division of target zones
is applied according to a research need.

First, a geometric union technique is applied for these three spatial layers to disag-
gregate the physical surface layer into subunits in order to designate each subunit to a
unique source zone j and target zone z. Second, the area for each disaggregated subunit
polygon is calculated, which enables calculating an estimated total floor area FA for
each spatial subunit s by multiplying the area with the vertical dimension regarding the
number of floors or height, whereas in both cases the default value is set to 1 for non-
building units. This allows for a calculation of a relative floor area RFA for each subunit s
within a base station j given the total sum of estimated total floor area FA of all subunits
within a base station j as follows:

RFA ¼ FAsP
FAs 2 j

(1)

At this point, each disaggregated subunit in the physical surface layer has three addi-
tional attributes: source zone ID, target zone ID and a relative floor area RFA within a
coverage area of a base station to which a given unit belongs.

3.3. The integration of time-dependent human activity data

In the third step of the MFD method, the disaggregated physical surface layer is linked
with time-dependent human activity data based on the activity function type of a spatial
subunit. The link allows for a more accurate interpolation of mobile phone data between
disaggregated spatial subunits within each base station coverage area, while taking into
account the probabilities of human activity types.

In general, the probability of people to conduct certain activities at certain spatial
subunits at a certain time can be acquired from a time-use survey (Eurostat 2009, UNSD
2016) or activity travel diary data (see Schönfelder and Axhausen 2010). Given data
sources allow for an extraction of the average distribution of people by activity type in
time that can be associated with spatial subunits based on the activity location type. Any
classification of human activity types can be applied, as long as the activity classification
is congruent with activity function types of a spatial subunit, such as associating home
activities with residential areas. Ideally, the data source is from the case study area.
However, the activity classification can represent a more general (e.g. national) level or
even from a neighbouring country or elsewhere, as long as the classification represents
human activity patterns similar enough for the case study area given the similar social
and environmental contexts.

The temporal resolution of human activity data in the MFD method depends on
available data sources and research needs. Thus, the basis of the method is the
distribution of people by activity type at given time intervals, for example, hourly
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intervals. The estimated distribution of people by activity type (e.g. being at home) in a
given time unit can be further refined if input data contains more fine-grained informa-
tion about weekly (working day vs. weekend) and seasonal (e.g. summer vs. winter;
holiday weeks and months) variations in mobility and activity patterns of people.

In this modelling step, an estimated human presence EHP in time unit t is calculated
for each disaggregated spatial subunit s within a base station j given its RFA and time-
dependent probability for human presence, which is a combination of a daily hour factor
H, a weekday factor W and a seasonal (monthly) factor M, according to a human activity
function type a and spatial unit type u (land or building). The total sum of EHP of
disaggregated spatial subunits within each coverage area of a base station j in time unit
t is 1. EHP is calculated as follows:

EHPt ¼ ðHauWauMauÞ � RFAsj (2)

MFD method can be used to calculate EHP for the whole population, whereas it can also
be calculated separately for each subgroup of a population (e.g. youth, working-age
people, and elderly; local vs. non-locals) if the given division is available for both human
activity data and mobile phone data. Another possibility is to calculate EHP separately
for local residents and non-residents (e.g. transit, visitors and tourists). This would
provide a more accurate refinement of population distribution within a base station.

It is possible to derive the hourly distribution of people by activity type from time-use
survey data. Activity travel diaries can provide weekday and seasonal differences in the
probable human presence by activity type (Schönfelder and Axhausen 2010). Seasonal
differences can also be derived from longitudinal time-activity studies where personal
time use in indoors and outdoors (e.g. Hussein et al. 2012) can be linked to spatial unit
type (building, land) as an indication for seasonal influence. This combines hourly,
weekday and seasonal factors for calculating the distribution of people by activity
type as a function of time.

3.4. The integration of mobile phone data

In the fourth step of the MFDmethod, mobile phone data is linked to spatial subunits in the
physical spatial layer by base station j (source zones) and disaggregated into each spatial
subunits according to its EHP by given time unit t (e.g. hourly intervals as in this study).
While mobile phone data is considered as a proxy for population mapping, it is recom-
mended to normalise mobile phone data to represent the relative population distribution
within the study area. Thus, the total sum of the relative share of mobile phone data RMP in
a study area S in time unit t is always 1. RMP for each base station j is calculated from all
mobile phone data MP conducted within a study area S in given time unit t as follows:

RMP ¼ MPtjP
MPtj 2 S

(3)

Next, normalised mobile phone data of each base station j in time unit t is interpolated
into disaggregated spatial subunits s within a coverage area of a given base station j
regarding EHP coefficients of each spatial subunit s. A relative observed population ROP
for each disaggregated subunit s for given time unit t is calculated based on an
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estimated human presence EHPt and a relative share of mobile phone data RMPt in the
given time unit t as follows:

ROPt ¼ EHPt � RMPt (4)

3.5. The spatial aggregation to desired target zones

In the final step, disaggregated spatial subunits in the physical surface layer are dis-
solved by desired target zones z (each subunit is already assigned to a unique target
zone in the second step of the method). Thus, the share of relative observed population
ROPt of each subunit s within each target zone z in time t is summarised to ZROP as
follows:

ZROPt ¼
X

s2z
ROPt (5)

As an outcome, the distribution of a relative observed population derived from
mobile phone data, which was originally assigned to the coverage areas of a base
station, is now more realistically transformed to the desired spatial division of target
zones. In the next section, an empirical implementation of the proposed MFD method is
described.

4. Implementation of the proposed MFD method

We selected Tallinn, the capital city of Estonia, as our case study area to empirically test
the proposed MFD method given the availability of mobile phone data. Tallinn is a
medium-sized European city and the biggest city in Estonia, located within a total area
of 145 km2 and with over 400,000 inhabitants (Figure 3). Based on the conceptual
framework of the proposed MFD interpolation method for mobile phone data, we
developed an open access tool for the Python programming language, which is freely
available on GitHub (http://doi.org/10.5281/zenodo.252612).

We investigated mobile phone data from a 1-month study period in March 2015,
linked to the 290 base stations that provide the coverage area for a mobile network
signal for the case study area. Three different random mobile phone data sets at the
base station level are applied: (1) raw CDR data from working days (Monday–Friday)
at night (2 AM–6 AM); (2) raw CDR data during working days at daytime (4 PM–5
PM); and (3) the most probable home locations of mobile phone users derived from
CDR data using the anchor point method (Ahas et al. 2010). Comprehensive details
about applied mobile phone data sets are provided in Section S1 in the
Supplemental material.

In addition to mobile phone data (source zones), we applied five different ancillary
data sets derived from six data sources (Table 1) for implementing the proposed MFD
method for mobile phone data for Tallinn, Estonia. We applied two target zone layers to
investigate the method for 500 m (0.25 km2, n =664) and 100 m (0.01 km2, n =16,280)
statistical grid cell layers from Statistics Estonia.

Since ready-made data is not available, we prepared the physical surface layer using
four ancillary data sets: (1) land-cover data to classify land-cover parcels by six activity
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function types (residential, work, retail and service, other, transport, restricted); (2)
building footprint data to integrate buildings with the main usage function (residential
and public, non-residential); (3) normalised Digital Surface Model (nDSM) data from
LIDAR to calculate building heights for estimating the number of floors; and (4) the
Open Street Map database to provide additional information to extract buildings with
public, service and retail as the main functions. An overlay method was applied to create
a physical surface layer where each disaggregated spatial subunit in the physical surface
layer has three attributes: the number of floors, activity function type and spatial unit
type of either building or land.

In the second step, a geometric union between the physical surface layer, the Voronoi
polygon layer representing theoretical coverage areas and official statistical grid layer for
target zones is applied. We received two different disaggregated physical surface layers
since we are investigating the results of MFD method at two target zone levels. In the
third step, we applied a national time-use survey data and calculated the average hourly
distribution of people by activity type to estimate the human presence for spatial units

Figure 3. The population registry data representing a night-time population distribution in Tallinn
for 500 m (a) and 100 m spatial resolution (b) in 2015.

Table 1. The list of ancillary data sets used in the case study.
Data set Attributes Source Date

Land-cover data Land-cover parcels with classification (polygon) The Estonian National Topographic
Database (ENTD), the Land Board
of Estonia (LBE)

2015

Building data 1. Building footprints (polygon) with binary usage
classification (residential or public; other)

The ENTD, the LBE 2015

2. Building heights based on LIDAR measurements
with 1 m accuracy (raster)

The nDSM data, the LBE 2013

3. Building functionality based on crowdsourcing
input on building usage (point) for refining
building
usage classification

The OpenStreetMap Database (OSM) 2015

Human activity
data

The average hourly distribution of people by
activity type based on cross-sectional time-use
survey study

The Estonian Time Use Survey,
Statistics Estonia

2010

Population
register data

Residential population data at building level,
which is aggregated to both target zones
(100 m and 500 m grid cells)

The Population registry data, Tallinn
municipality

2015
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in the physical surface layer. We also applied a seasonal factor to refine the estimated
human presence for each disaggregated spatial subunit. In the fourth step, we applied
all three mobile phone data sets and calculated the relative observed population
according to MFD. Finally, we created six spatial output layers in the two target zones
for three data sets. A detailed description of the implementation of the MFD method in
Tallinn is provided in Section S2 in Supplemental material.

To compare the outcome of the MFD method, we created another six spatial output
layers where population distribution derived from mobile phone data is interpolated to
target zones using the simple areal weighting (AW) interpolation method. We applied
population register data at the building level that is aggregated to both target zone
layers as the best available baseline to empirically demonstrate how the proposed MFD
method improves a night-time (sleeping) population distribution compared to the AW
method. To evaluate the accuracy and validity of the proposed MFD method against AW
method for refining population distribution derived from mobile phone data, we per-
formed three statistical analysis: (1) linear regression for comparing correlation coeffi-
cients and standard error of the estimate (Maantay et al. 2007); (2) the mean absolute
error; and (3) the coefficient of variation (CV) based on root mean square error of each
target zone normalised by the baseline target zone value (Mennis 2016).

5. Results

5.1. Population distribution by activity function type

In general, the proposed MFD interpolation method refines a night-time population
distribution derived from mobile phone data by activity function type significantly
better than areal weighting (AW) when compared to reference data (Figure 4). For the
case of a night-time population distribution, some 94% of people are at home according
to a national time-use survey. In comparison, the proposed MFD method relocates 86%

Figure 4. The population distribution by activity function type by MFD and AW interpolation
methods regarding three mobile phone data sets in comparison to population register and national
time-use survey data.
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of a night-time population derived from night-time call activities to residential areas,
whereas with AW the given share is only 22%. In the case of a sleeping population
distribution at night, we can consider that 100% of population register data indicates a
sleeping population in residential areas. In comparison, we applied home anchor points
of mobile phone users derived from call activities as an indicator for the sleeping
population. The MFD method relocates 100% of home anchor points to residential
areas, whereas the given share is only 24% in the case of the AW method.

During the day (as an example of 4 PM to 5 PM), population distribution by activity
function type between the two interpolation approaches is less obvious, although
population division with the MFD method coincides more with a national time-use
survey.

5.2. Night-time population distribution in target zones

A visual comparison between two interpolation methods in interpolating the spatial
distribution of a night-time population derived from home anchor points (Figure 5) and
call activities conducted between 2 AM and 6 AM (Figure S3 in Supplemental material)
reveals distinct spatial differences regarding both target zones; the MFD method

Figure 5. The distribution of home anchor points derived from call activities as an indication for a
night-time population by a simple AW and the proposed MFD interpolation methods with both
target zone layers.
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relocates the population to residential areas compared to the AW method, which
distributes people equally in space.

The comparison of population register data as a baseline distribution for a night-time
population distribution and population distribution in the case of home anchor points
(Figure 6) and call activities (Figure S4 in Supplemental material) demonstrates the
differences with the baseline distribution between two interpolation approaches, espe-
cially in case of 100 m grid cells. In general, the population distribution using the MFD
method has fewer differences with population register data, whereas the influence of
the method is more significant in areas where larger coverage areas of a base station
occur.

Interestingly, the given difference maps reveal an inherent weakness of mobile phone
data. There is a tendency to systematically overestimate the population in the city centre
(blue colour) where human communication is significantly more active. However, the
aim of the proposed MFD method is not to resolve the given bias, but to refine mobile
phone data (e.g. population) within the coverage areas of a base station. Thus, the
proposed method relocates the population into more populated target zones and
increases the number of target zones with no population as compared to a simple AW
method (Figure S5 and Figure S6 in Supplemental material).

Figure 6. Difference (percentage points) in a night-time population distribution between population
register data as the baseline distribution and home anchor points by MFD and AW interpolation
methods with both target zone layers. Target zones in red colour indicate underestimation and blue
colour overestimation of population, indicated by home anchor points.
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5.3. Evaluating MFD method for interpolating population distribution

Table 2 summarises the statistical comparison of the MFD method and simple AW
method for refining mobile phone-based population distribution in comparison to
population register data as a baseline distribution for a night-time population.
Regardless of the evaluation measure, the MFD method outperforms the AW method;
the former has higher correlation coefficients with a lower standard error (Figure S7 and
Figure S8 in Supplemental material), lower mean absolute error and coefficient of
variation of RMSE, especially for the 500 m × 500 m target zone resolution. The MFD
method improves population distribution more for home anchor points since it corre-
sponds better with population register data, as both indicate a sleeping population. The
finding supports the visual evidence presented in the previous subsections suggesting
that incorporating spatio-temporally dependent ancillary data in interpolating mobile
phone data by coverage areas of base station clearly improves the refinement of human
presence to target zones as compared to a simple areal weighting interpolation method.

5.4. Daytime population distribution in target zones

A visual comparison between two interpolation methods in interpolating the spatial
distribution of a daytime population derived from call activities conducted between 4
PM and 5 PM (Figure 7) reveals fewer distinct spatial differences regarding both target
zones. During a given time period, call activities are clearly concentrated to the city
centre, where a dense base station network already exists, and the proposed MFD
method has a less significant effect on refining population distribution as compared to
a night-time population.

Regardless of target zone resolution, MFD method has a less significant effect in relocat-
ing a daytime population to target zones within the study area (Figure 8) given the strong
correlation in population distribution between two interpolation approaches (Figure S9 in
Supplemental material). On a smaller scale, however, some significant population reloca-
tions occur at grid level. In the case of 500 m target zones, for example, in almost 50% of all
target zones, the MFD method relocates ±0.01–0.05% points of the relative observed
population (Figure S10 in Supplemental material). This indicates ±40–200 relocated people

Table 2. Summary of evaluating the results of both interpolation methods against population
register data regarding two target zone levels and two mobile phone data sets to indicate a
night-time population.

Target
zone
level Evaluation method

Call activities
2 AM to 6 AM

Home anchor
points

MFD AW MFD AW

500 m grid cells (n = 664) Linear regression Correlation coefficient 0.674 0.511 0.832 0.686
Std. Error 0.189 0.220 0.142 0.186

The mean absolute error (MAE) 0.087 0.122 0.072 0.107
Coefficient of variation (CV) based on the RMSE 0.211 0.242 0.142 0.186

100 m grid cells (n = 16280) Linear regression Correlation coefficient 0.472 0.233 0.618 0.347
Std. Error 0.016 0.018 0.014 0.017

The mean absolute error (MAE) 0.005 0.008 0.004 0.008
Coefficient of variation (CV) based on the RMSE 0.019 0.019 0.015 0.017
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in a target zone as compared to the population estimate by the AW method. Furthermore,
almost 10% of all target zones have more than ±200 relocated people in a target zone with
the MFD method.

Figure 7. The distribution of call activities (4 PM to 5 PM) as an indication for a daytime population in given
time period by simple AW and the proposed MFD interpolation methods with both target zone layers.

Figure 8. Difference (percentage points) in the distribution of call activities (4 PM – 5 PM) as an
indication for a daytime population between the proposed MFD and simple AW interpolation
methods with both target zone layers. Target zones in red colour indicate higher population
distribution with the proposed MFD interpolation method as compared to simple AW. Grid cells
with blue colour indicate the opposite.
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6. Discussion and conclusions

The implementation of passively collected mobile phone data such as CDR data to
investigate human presence and mobility is mushrooming in social sciences. However,
the given data has theoretical and methodological challenges that one needs to
acknowledge. This paper gives attention to one of the important challenges that has
not been widely discussed to date – the uneven spatial resolution of CDR data due to
the uneven spatial configuration of mobile network base stations, and its spatial inter-
polation. We introduced a dasymetric interpolation approach as one promising way
to overcome this. Thus, we proposed a generic conceptual framework of the multi-
temporal function-based dasymetric (MFD) interpolation to enhance the spatial resolu-
tion of mobile phone data, while taking into account the socio-spatial structure (land
use, building volume) and time-dependent human activity data.

The empirical findings demonstrate that the applied MFD interpolation method
transforms CDR data as an indication of population distribution to desired target
zones (statistical grid cells) more accurately than a simple areal weighting method.
The finding was confirmed by evaluating the results of both interpolation methods
against population register data as a baseline for a night-time population. In general, the
results were consistent with call activity and home anchor point data sets and two
different target zone levels with 100 and 500 m resolution. The MFD method had less of
an effect for a daytime population interpolation compared to the areal weighting
method at the city level; however, it refines the population between target zones
significantly on a smaller scale, which is essential, for example, in planning and risk
assessment at the micro level.

As the results clearly show, the proposed interpolation method refines the population
distribution estimates within a base station coverage area. Yet, it does not resolve the
inherent bias of mobile phone data – the fact that it is influenced by the variance of
human interactions with mobile devices in space and time, whereas one spatial outcome
is the tendency to overestimate the city centre, given its higher probability for human
interaction. However, the proposed MFD method can reduce the given biases to some
extent when introducing population subgroups to the method, which is similar to
Martin et al. (2015).

In general, the method can be improved by providing more accurate ancillary data
about the socio-spatial structure and human activities or by incorporating additional
data sources. For instance, traffic count data refines an estimated human presence for
different sections of a road network. Also, more accurate knowledge about coverage
areas of a base station would improve the spatial interpolation of CDR data since
commonly (also in this case study), a straightforward Voronoi tessellation for theoretical
coverage areas of a base station is applied, which does not coincide with the actual
coverage areas. Certainly, more detailed research about the sensitive scale issue of EHP
at different spatial resolutions and the comprehensive validation of accuracy estimates
of the method need to be conducted in future.

We did not demonstrate how the proposed MFD method can be applied to examine
societal issues. However, the method is generally applicable in the broad field of social
sciences since the method: (1) can transform mobile phone data to any desired spatial
division of target zones (e.g. grids and census tracts) given the research need; (2) enables
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reliable data comparison, integration and validation of mobile phone data with other data
sources; (3) enables reliable mobile phone data interpolation for longitudinal and repeated
research; and (4) can improve a systematic estimate of population distribution in time and
space from a small scale (e.g. neighbourhood level) to a country level (e.g. global level),
depending on mobile phone and ancillary data availability. Thus, the method can provide
dynamic population distribution mapping to assess object-oriented risks (Smith et al. 2014)
or to model more realistic spatio-temporal accessibility to services (Tenkanen et al. 2016).

We only applied the proposed interpolation method for population modelling at an
aggregated level; however, it can also be used for person-based research for refining
personal mobility patterns and activity spaces at the individual level. The method can be
developed to refine the probable location of an individual within a base station depend-
ing on the individual’s spatio-temporal activities derived from one’s mobile phone
usage. For example, individual meaningful locations (e.g. home and work) derived
from one’s CDR data at the base station level (Ahas et al. 2010) allow the model to
calculate personal probabilities for a given individual to be associated with a certain
type of spatial subunit within certain coverage areas in a given time. Certainly, one must
acknowledge and preserve the privacy of phone users regarding the use of mobile
phone data (see, e.g. Yin et al. 2015).

We conclude that the proposed multi-temporal, function-based dasymetric interpola-
tion method offers a promising approach to increase the usability and reliability of
passively collected mobile phone data. Our empirical findings provide a solid base to
improve the spatial interpolation methods for mobile phone-based research. Furthermore,
this study contributes to developing dasymetric population modelling by incorporating
mobile phone data. To facilitate the future development of the proposed approach, we
share the implementation of our method in GitHub as open access Python code.
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S1. Description of Mobile Phone Data 

In general, mobile devices are widely used in Estonia. Some 95% of Estonia’s 1.3 million inhabitants used mobile 

phones in 2008, and the mobile phone subscribers (SIM cards) penetration rate was over 150% in 2014.  

The call detail record (CDR) data used in this study is collected by the largest mobile network operator in 

Estonia with a market share of 40–50% of mobile subscribers in Estonia. CDR data is further processed by a spin-

off company Positium LBS, who provided the datasets for this study. The data is recorded in accordance with 

Estonian legislation for billing purposes by the operator, and not for the purposes of this study. This study is in 

accordance with European Union legislation on the use of personal data (European Commission 2002). The 

database contains records of all outgoing call activities initiated by a mobile phone owner. Each CDR includes the 

unique identification (ID) number of the phone (randomly generated by the operator for every mobile phone), the 

exact time (HH:MM:SS) and date (YYYY.MM.DD) of call activity, and geographical coordinates of the mobile 

network antenna that provided the network signal. The precision of the spatial accuracy of the CDR corresponds 

to the coverage area of the network antenna. The precision of the temporal accuracy of the CDR depends on call 

activity of people. 

We study only mobile phone data that is linked to those 290 base stations that provide the coverage area 

of mobile network signal for the city of Tallinn (Järv et al. 2014; p. 127). Since the actual coverage areas of a base 

station are unknown, Voronoi tessellation is applied to calculate theoretical coverage areas (polygons) for each 

base station. The average spatial extent of given theoretical coverage areas is 1.1 km2, however, coverage areas 

are not spatially fixed (Figure S1). The spatial extent of a theoretical coverage area at a minimum is 0.01 km2 and 

maximum is 48.4 km2, whereas a lower quartile value is 0.13 km2, a median 0.36 km2 and an upper quartile 0.88 

km2. The spatial extent of coverage areas is directly related to demand of mobile phone usage. The smallest 

coverage areas are located in densely populated city (sub)centres and larger in more sparsely populated areas. 



 

Figure S1. All studied 290 theoretical coverage areas of a base station in Tallinn and the ranking of coverage areas by 

their spatial extent in a logarithmic scale. 

We investigated the proposed multi-temporal function-based dasymetric (MFD) method for mobile phone data 

with three mobile phone data sets selected from a random sample of 50% from the original databases in March 

2015 provided by Positium LBS. Two data sets are extracted from a one-month raw CDR database consisting of 

a 5.3 million call activities made during working days (Mon.–Fri.) by 58,470 subscribers in the study area. From 

the latter we select one data set including CDR data from 2 AM to 6 AM to represent a nighttime population and 

second data set includes CDR data from 4 PM to 5 PM as an example to represent a daytime population. The third 

data set consists of the most probable home locations of given phone users at a base station level. These data were 

derived from raw CDR data using the anchor point model (Ahas et al. 2010). For each individual in the sample, 

this model finds the two most frequently used mobile network base stations where mobile phone usage occurs 

during a month. These base stations are called as anchor points of one’s daily life. Furthermore, by taking into 

account (1) the average time of day and its standard deviations of (outgoing) CAs conducted in each activity 

location and (2) the spatial relationships between neighbouring activity locations, the model distinguishes home- 

and work-time locations. In total, the anchor point model extracted 56,778 the most probable home locations that 

are distributed between selected 290 base stations in the study area. 

Certainly, individual mobile phone usage varies significantly in temporal and spatial terms as well as in 

relation to the overall amount of phone usage. To minimise differences between phone users in terms of total 

amount of CDRs, we calculated a weighted physical presence for each individual in each base station for each 

hour of the given time frame based on the number of CDRs generated in each base station from all CDRs conducted 

during a given hour. Hence, we can better reflect the physical presence of phone users and their time spent between 

the coverage areas of a base station depending on one’s call activity frequency in each base station. For example, 

to some extent, this solves the problem of the amplification of CDRs conducted by very active phone users who 

are immobile and located in the city centre (office workers) or who are very mobile throughout the city (e.g. taxi 

drivers, couriers).  

S2. Implementation of MFD method in Tallinn, Estonia 

S2.1. The preparation of physical surface layer 

To prepare a physical surface layer in the multi-temporal function-based dasymetric (MFD) method for the spatial 

disaggregation of the study area, first, from The Estonian National Topographic Database (ENTD) a land cover 

layer is created by aggregating land cover parcels based on six activity function classes, as indicated in Table S1. 

This enables linking the land cover layer with the classification of building usage and human activity types, 

similarly to a study by Greger (2015).  



Table S1. The classification of activity function type and linkage to land parcels by land cover and buildings by 

functionality, and the association with human activity types. 

Activity 

function type 

Land parcels  

by land cover type 

Building units  

by functionality type 
Human activity type 

Residential residential area residential, accommodation, prison 
at home or 

accommodation 

Work industrial and business area 

industrial, office, public institutions predominantly not 

for in situ services (e.g. police department, hospital, town 

hall), educational 

at work or school 

Retail & 

Service 
 

retail and service (e.g. gas station, cleaner service, local 

bank branch) 

shopping and using 

services 

Other 
open area (e.g. park, square), 

forest, cemetery 

public institutions for in situ services (e.g. libraries, sport 

facilities), leisure and entertainment, eatery, churches 
other (leisure) activities 

Transport 
transport networks  

(e.g. road, railway, parking) 
 travelling, on the move 

Restricted 
water, wetland, arable land, 

restricted area (e.g. wasteland) 
 not accessible, no activity 

Second, we prepared the building layer by refining building usage type and estimating total floor area. First, all 

buildings with a footprint area over 20 m2 are selected from the up-to-date building footprint layer provided by 

the ENTD. These building units initially have the binary classification of a residential (or public) building and 

non-residential building. To further refine building classification according to six land cover classes (Table S1), 

we applied the OSM database to obtain more detailed information about activities and functionalities of buildings. 

Classification is done semi-automatically since only one building usage type for each building is assigned to 

indicate the main usage. Hence, from residential buildings assigned by the ENTD all public buildings were 

distinguished and further assigned with either work/educational or leisure-related usage type. The main usage type 

for accommodation buildings is considered a residential usage type since customers use it as a temporary home, 

although it has an important work-related usage type as well. Other (i.e. non-residential building) buildings 

assigned by the ENTD are considered to have a work-related building usage type. Additionally, the OSM data 

reveals buildings that have public, retail and service as the main functional type. We acknowledge that it is rather 

arbitrary to assign one usage type for each building and not to consider multifunctional buildings, however, we 

believe this ancillary data to be sufficient for highlighting how the dasymetric interpolation approach increases the 

spatial accuracy of mobile phone data.   

Third, we included a vertical dimension for buildings. Since we do not have ready-made available data 

about the total floor area for each building, we calculated the estimated values based on the building footprint area 

and building height. We prefer to apply estimates for total floor area (m2) of buildings, which provides a more 

accurate population estimation than rough building volumes (m3), based on a study by Biljecki et al. (2016). The 

average height for each building is calculated based on LIDAR measurement points at 1 m accuracy obtained from 

the normalised Digital Surface Model, which intersects building footprint polygons (see Alahmadi et al. 2013). To 

further estimate the number of floors, the average building height is divided by the floor height set for 3.5 m for 

residential and 4.5 m for other buildings. The given floor height estimations were set by dividing the measured 

building height with the actual number of floors based on a random sample of buildings. We further excluded 

buildings less than 2 m high from the building layer as unsuitable to be inhabited by people. Applied floor heights 

are rather arbitrary; however, we believe this ancillary data to be sufficient for the case study to highlight how the 

dasymetric interpolation approach increases the spatial accuracy of mobile phone data.  

Fourth, an overlay method was applied to calculate the geometric union of a land cover layer with a 

building layer, whereas in the case of building polygons, only building attributes remain. For subunits with the 

surface unit type of land the default value for the number of floors is set to 1. Now, each disaggregated spatial 

subunit in the physical surface layer has three attributes: the number of floors, activity function type, and spatial 

unit type of either building or land. 

 

 



S2.2. The spatial disaggregation by source and target zones 

In the second step, a geometric union with the physical surface layer, the layer representing 290 Voronoi polygons 

as theoretical coverage areas of a base station (source zones) and the official statistical grid cell layer (target zones) 

is applied to designate a unique base station ID and a unique official statistical grid cell ID for each spatial unit in 

the physical surface layer. While we apply two statistical grid cell layers with 100 m x 100 m and 500 m x 500 m 

resolutions, we obtain two physical surface layers with different disaggregation levels. Next, the area for each 

disaggregated subunit polygon is calculated, which enables a calculation of the estimated total floor FA for each 

spatial subunit by multiplying area with the number of floors. This allows for a calculation of a relative floor area 

RFA for each subunit within a base station from the sum of FA within the given base station, as illustrated in Table 

S2. For example, base station ID 10 covers an area of 70 km2 with a total sum of FA 160 km2. While a subunit ID 

10101 has FA 50 km2, then it has RFA 0.29 (50/170=0.29) within the base station ID 10. For comparison, in the 

case of a simple areal weighting method, all subunits would have RFA 0.14 (10/70=0.14). 

Table S2. An illustration of calculating a relative floor area (RFA) for each subunit within a base station from the estimated 

total floor area of the base station (FA). 

Subunit 

ID 

Base Station ID 

(source zone) 

Grid cell ID 

(target zone) 

Activity 

function type 

Spatial unit 

type 

Area 

[km2] 

Number 

of floors 

FA 

[km2] 

RFA 

[%] 

10101 10 10 Residential building 10 5 50 0.29 

10201 10 20 Residential land 10 1 10 0.06 

10202 10 20 Work building 10 3 30 0.18 

10203 10 20 Work land 10 1 10 0.06 

10301 10 30 Retail&servic

e 
building 10 5 50 0.29 

10302 10 30 Restricted land 10 1 10 0.06 

10303 10 30 Transport land 10 1 10 0.06 

Total      70   170 1 

S2.3. The integration of time-dependent human activity data 

In the third step of the MFD method, the physical surface layer is linked with data on human activity in time. For 

Tallinn, we applied the time usage of people by activity type on working days (Mon.–Fri.) provided by Statistics 

Estonia (Figure S2). The data is based on the Estonian Time Use Survey in 2010 that was conducted using the 

harmonised methodology of Eurostat time use surveys (Eurostat 2009). The average hourly distribution of people 

by activity type is calculated based on the average time usage of people by activity type for each hour of a day at 

an aggregated level. In this case study, subpopulation groups are not considered as proposed by the MFD 

interpolation method, but is calculated for the entire population. 

 

Figure S2. The average hourly distribution of people by human activity type classification on an average working day in 

Estonia. Source: The Estonian Time Use Survey data in 2010 from Statistics Estonia. 



Temporally sensitive human activity information is incorporated to disaggregated spatial subunits in the physical 

surface layer by linking human activity type with activity function type of subunits (Table S1). To calculate an 

estimated human presence EHP for each disaggregated spatial subunit for every hour of the day, both a daily hour 

factor H and a seasonal factor M for estimating human activity is used (Table S3). First, the average hourly 

distribution of people by activity type is considered as a proxy for H for each human activity type. For example, 

both subunits of ID 10101 and 10201 have an activity location type of a residential building, and hence, for the 

time period between 4 PM and 5 PM its H has the coefficient of 0.42, since at given time period, 42% of Estonians 

are at home, on average. For spatial subunits with restricted activity function type we consider them inaccessible 

for people and assume no human presence at any time. 

Table S3. An illustration of calculating an estimated human presence (EHP) for each subunit within a theoretical coverage 

area (Voronoi polygon) of the base station ID 10 in the case of the time period between 4 PM and 5 PM. 

Subunit 

ID 

Grid cell ID 

(target zone) 

Activity 

function type 

Spatial unit 

type 

RFA 

[%] 
H 

[%] 

RFA 

x 

H 

M 

[%] 

∑(𝑹𝑭𝑨 𝒙 𝑯)  ∈  𝒍 

x 

M 

EHP 

[%] 

10101 10 Residential building 0.29 0.42 0.122 0.90 0.132 0.58 

10201 20 Residential land 0.06 0.42 0.025 0.10 0.015 0.07 

10202 20 Work building 0.18 0.23 0.041 0.90 0.049 0.21 

10203 20 Work land 0.06 0.23 0.014 0.10 0.006 0.02 

10301 30 Retail&servic

e 
building 0.29 0.05 0.015 1.00 0.015 0.07 

10302 30 Restricted land 0.06 0.00 0.000 1.00 0.000 0.00 

10303 30 Transport land 0.06 0.19 0.011 1.00 0.011 0.05 

Total     1  0.228  0.228 1 

 

Second, the seasonal factor M is applied since seasonality influences the division of human presence between 

indoors and outdoors. Here, M is applied as the probability coefficient of people to refine locations of people 

between disaggregate spatial subunits based on spatial unit type (land; building) within each activity function type 

and within each base station. A study by Hussein et al. (2012) found that people spend some 90% of time indoors 

and 10% outdoors in Helsinki, Finland during March. We expect these findings to fit well in our case study given 

the general similarities of human activity travel behaviour, identical climatological conditions between Helsinki 

and Tallinn, and both studies are conducted in the same season of the year. Hence, an assumption is made that if 

an activity function type (e.g. at home) includes both spatial unit types (e.g. residential building; residential land), 

then M has the coefficient of 0.90 for building subunits and 0.10 for land subunits in spring (March). In this study, 

these coefficients are used for three activity function types (residential; work; and other) and for other activity 

function types M has the coefficient of 1. For example, subunit ID 10101 and 10201 have both residential activity 

function type, while the former has M as 0.90 since it is a building, and the latter 0.1 since it is a land subunit 

(Table S4). 

For example, both subunits of ID 10101 and 10201 have residential activity function type and are located 

within a Voronoi polygon (theoretical coverage area) of base station ID 10. For the time period between 4 PM and 

5 PM EHP for subunit ID 10101 is calculated as follows: (((0.29 x 0.42) + 0.025) x 0.9) / 0.228 = 0.58 (Table S4). 

In other words, for a given hour of the day, some 58% of all people located within the coverage area of the base 

station ID 10 are estimated to be located within the subunit ID 10101. 

S2.4. The integration of mobile phone data   

In the fourth step in the MFD method, mobile phone data is linked to the physical spatial layer by base station ID. 

First, the hourly distribution of mobile phone data as a proxy for people distributed between Voronoi polygons of 

a base station in given time is normalised to represent the relative population distribution RMP of the case study 

area. Thus, the total sum of RMP by base station coverage area (Voronoi polygon) is always 1. Here, RMP is 

calculated for all three mobile phone data sets used in this study (Section S1). For example, if RMP is 0.200 for 

the Voronoi polygon of a base station ID 10, some 20% of all mobile phone data in the case study area is located 

within a given Voronoi polygon (Table S4). Second, the relative observed population ROP for each subunit is 



calculated based on EHP of given subunit within a base station and RMP of a base station to which a given spatial 

subunit is assigned. For comparison, ROP is also calculated based on a simple areal weighting (AW) and a vertical 

areal weighting (VAW) interpolation method. 

Table S4. An example of calculating relative observed population ROP for each subunit within the base station ID 10 

regarding simple areal weighting (AW), vertical areal weighting (VAW) and multi-temporal function-based dasymetric 

(MFD) interpolation method for the time period 4 PM – 5 PM. 

Subunit 

ID 

Grid cell ID 

(target zone) 

Activity 

function type 

Spatial 

unit 

type 

AW 

[%] 

RFA 

[%] 
EHP 

[%] 
RMP 

[%] 

ROP [%] 

MFD 
(EHP X RMP) 

AW 
(AW X RMP) 

VAW 
(RFA X RMP) 

10101 10 Residential building 0.143 0.29 0.58  0.116 0.028 0.058 

10201 20 Residential land 0.143 0.06 0.07  0.014 0.029 0.012 

10202 20 Work building 0.143 0.18 0.21  0.042 0.028 0.036 

10203 20 Work land 0.143 0.06 0.02  0.004 0.029 0.012 

10301 30 Retail&servic

e 
building 0.143 0.29 0.07  0.014 0.028 0.058 

10302 30 Restricted land 0.143 0.06 0.00  0.000 0.029 0.012 

10303 30 Transport land 0.143 0.06 0.05  0.010 0.028 0.012 

Total    1 1 1 0.200 0.200 0.200 0.200 

 

For example, ROP based on EHP for the subunit ID 10101 is 0.58 x 0.200 = 0.116, which means that some 11.6% 

of all people in the case study area derived from mobile phone data is located within given subunit (Table S4). For 

comparison, with a vertical areal weighting (VAW) method, ROP for the same subunit would be 0.29 x 0.200 = 

0.058 indicating 5.8% of people to be located in given subunit. With a simple areal weighting (AW) method ROP 

would be 0.029 since each subunit has an equal area of 10 km2 (10/70 x 0.200=0.029).  

S2.5. The spatial aggregation to desired target zones   

Finally, each disaggregate subunit now has ROP based on EHP and is assigned to a unique official statistical grid 

cell ID, which in this case study is an indication of the target zones layer of the MFD method. By summarising 

ROP of all disaggregate spatial subunits by the official statistical grid cell, the method now provides an outcome 

of ROP by official grid cells as target zones in this case study. Hence, the MFD method has interpolated relative 

observed population derived from mobile phone data with spatial resolution of Voronoi polygons of a base station 

(source zones) into official statistical grid cells (target zones).  

In the case of the base station ID 10, its 20% of relative observed population from all population is further 

interpolated into three predefined grid cells whereas, for example, some 11.6% of the population is estimated to 

be located within the grid cell ID 10 (Table S5). For comparison, with a simple areal weighting (AW) interpolation 

method, only some 2.8% of the population, and with a vertical areal weighting (VAW) interpolation method, some 

5.8% would have been estimated to be located in grid cell ID 10. 

For the implementation of the proposed MFD interpolation method for mobile phone data in Tallinn we 

developed an open access tool for the Python programming language, which is freely available from GitHub 

(http://doi.org/10.5281/zenodo.252612). 

Table S5. An example of interpolating relative observed population (ROP) from a theoretical coverage area of a base 

station (Voronoi polygon) into predefined grid cells in case of the proposed multi-temporal function-based dasymetric 

(MFD), simple areal weighting (AW) and vertical areal weighting (VAW) interpolation method. 

Grid cell ID 

(target zone) 

Base Station ID 

(source zone) 

ROP [%] 

MFD AW VAW 

10 10 0.116 0.028 0.058 

20 10 0.060 0.086 0.060 

30 10 0.024 0.086 0.082 

Total  0.200 0.200 0.200 

 

 



S3. Nighttime population distribution 

 

Figure S3. The distribution of call activities (2 AM – 6 AM) as an indication for a nighttime population by a simple areal 

weighting (AW) and the proposed MFD interpolation methods with both target zone layers in Tallinn. 

 

Figure S4. Difference (percentage points) in a nighttime population distribution between population register data as the 

baseline distribution and call activities (2 AM – 6 AM) by the proposed MFD and a simple areal weighting (AW) 

interpolation methods with both target zone layers. Target zones in red colour indicate underestimation and blue colour, 

overestimation of population indicated by call activities. 



 

 

Figure S5. The distribution of target zones by the difference of a sleeping population in a target zone between population 

register data as the baseline distribution and home anchor points by the proposed MFD and a simple areal weighting (AW) 

interpolation methods with both target zone layers. Note that differences are indicated in percentage points for 500 m and 

in per-millage points for 100 m target zone resolution. 

 

 

Figure S6. The distribution of target zones by the difference of a nighttime population in a target zone between population 

register data as the baseline distribution and call activities (2 AM – 6 AM) by the proposed MFD and a simple areal 

weighting (AW) interpolation methods with both target zone layers. Note that differences are indicated in percentage points 

for 500 m and in per-millage points for 100 m target zone resolution. 

 

 



 

Figure S7. The correlation of a nighttime population distribution between population register data and home anchor points 

refined by the proposed MFD and a simple areal weighting (AW) interpolation methods with both target zone layers. 

 

Figure S8. The correlation of a nighttime population distribution between population register data and call activities (2 

AM – 6 AM) refined by the proposed MFD and an areal weighting (AW) interpolation methods with two target zone layers. 



S4. Daytime population distribution 

 
Figure S9. The correlation of a daytime population distribution between population register data and call activities (4 PM 

– 5 PM) refined by the proposed MFD and a simple areal weighting (AW) interpolation methods with both target zone 

layers. 

 

 

Figure S10. The distribution of target zones by the difference of a daytime population derived from call activities (4 PM – 

5 PM) in a target zone between the proposed MFD and a simple areal weighting (AW) interpolation methods with both 

target zone layers. 
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