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Abstract

This study addresses two objectives: (1) to develop a formal method of optimally locating a dense network of air

pollution monitoring stations; and (2) to derive an exposure assessment model based on these monitoring data and

related land use, population, and biophysical information. Previous studies have located monitors in an ad hoc fashion,

favouring the placement of monitors in traffic ‘‘hot spots’’ or in areas deemed subjectively to be of interest. We apply

our methodology in locating 100 nitrogen dioxide monitors in Toronto, Canada. Locations identified by the method

represent land use, transportation infrastructure and the distribution of at-risk populations. Our exposure assessments

derived from the monitoring program produce reasonable estimates at the intra-urban scale. The method for optimally

locating monitors may have widespread applicability for the design of pollution monitoring networks, particularly for

measuring traffic pollutants with fine-scale spatial variability.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Air pollution; Traffic emissions; Monitoring networks; Location-allocation models; Health effects assessment
1. Introduction

Policymakers and scientists have shown growing

interest in the health effects of chronic exposure to

ambient air pollution. Recent epidemiological studies

have generated specific interest in traffic pollution. For
e front matter r 2005 Elsevier Ltd. All rights reserve
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example, a cohort study from the Netherlands (Hoek et

al., 2002) reported that large health effects on cardio-

pulmonary mortality were associated with living near a

major road (Relative risk ¼ 1.95, 95% CI: 1.09–3.51).

Yet uncertainties in exposure assessment methodologies

continue to raise questions about the reliability and

accuracy of risk estimates from intra-urban air pollution

studies (Briggs et al., 2000). In this context, we address

two research objectives: (1) to develop a formal method

of optimally locating a dense network of air pollution
d.
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monitoring stations; and (2) to derive an exposure

assessment model based on these monitoring data and

related land use, population, and biophysical informa-

tion.

This paper represents the initial stage of a multi-year

research project funded by the Canadian Institutes of

Health Research. The ultimate goal of the project is to

assess the relation between traffic-generated air pollu-

tion and health outcomes ranging from childhood

asthma to mortality from lung cancer. Some of the

health data are described elsewhere, and significant

associations with background particulate and sulfur

dioxide pollutants and elevated mortality have already

been reported (Finkelstein et al., 2003). A major

limitation of this first health effects study stemmed from

relatively crude exposure metrics, which relied exclu-

sively on interpolations from a sparse network of

government monitoring stations.

Because field-monitoring studies constitute one of the

most expensive components of an epidemiological study,

we were interested in developing a method that would

make maximal use of scarce air pollution monitoring

data. Previous studies have located monitors in an ad

hoc fashion, favouring the placement of monitors in

traffic ‘‘hot spots’’ or in areas deemed subjectively to be

of interest for land use and population characteristics

(Lebret et al., 2000; Kukkonen et al., 2001; Goswami et

al, 2002). We achieved this first step of our research plan

by developing a formal methodology for locating a fixed

number of air pollution monitors in Toronto, Canada.

Formal methods for the design of pollution monitoring

networks have been proposed before (Caselton and

Zidek, 1984; Caselton et al., 1992; Silva and Quiroz,

2003; Trujillo-Ventura and Ellis, 1991; Haas, 1992). Our

proposed approach is geared for urban applications for

air pollution measurements and is designed to capture

micro-scale variation, especially around major road-

ways.

After deriving the monitoring locations, we deployed

100 nitrogen dioxide (NO2) monitors throughout the

City of Toronto. We then implemented a land use

regression (LUR) model with the collected monitoring

data. For this study, we chose NO2 as a proxy for traffic

pollution because it is relatively inexpensive to measure

and has been used widely as a metric of exposure to

traffic emissions (Briggs et al., 1997).
2. Methods

2.1. Conceptual framework for locating monitoring

stations

The approach we use consists of two stages. First,

based on specified criteria, we determine a continuous

surface over the study area, which we term ‘‘the demand
surface’’. Higher values of the demand surface corre-

spond to increased need for monitoring. Second, we use

the demand surface as an input to an algorithm that

solves a constrained optimization problem from the

general family of location-allocation (L-A) problems.

The algorithm identifies the optimal locations for a

predefined number of air pollution monitors.

We use two criteria for the determination of the

demand surface. The first postulates that a larger

number of monitors should be located where the

pollution surface is expected to exhibit higher spatial

variability. To implement this criterion, we need an

initial estimate of the pollution surface, which would be

an approximation of the expected surface after actual

monitoring. Since this initial surface is not generally

available, we recommend obtaining a first estimate

either with available government monitoring data or

with a network of ground stations operated by

individual researchers. Both government and individual

monitoring networks are usually spatially sparse. In our

particular application, we obtained a first estimate of the

pollution surface through LUR with data from an area

wider than the City of Toronto to encompass a large

enough number of fixed-site monitoring stations (i.e.,

South-Central Ontario). The process is described in

more detail in the methodology implementation section

below.

Given a first estimate of the pollution surface, spatial

variability of pollution g(x
*
; h

*
) at location x

*
is

determined by the following equation, inspired by the

semivariogram equation that is often used in geostatis-

tics (Cressie, 1993, p. 58):

ĝðx
*
; h
*
Þ ¼

1

2

X
h

zðx
*
Þ � z x

*
þ h

*
� �� �2

" #
. (1)

In practice, a grid is imposed on the study area and g
_

is calculated at all the centroids of the zones that make

up the grid. If Zðx
*
Þ represents a random variable of the

pollution estimate at location x
*
; then zðx

*
Þ is a specific

pollution estimate at the same location. The right-side

summation of Eq. (1) occurs over all possible pairs of

locations that are formed between x
*

and a location

within distance h
*

from x
*
: The determination of g

_
at all

locations x
*

provides a surface of variability in the

pollution surface. This creates the demand surface that

satisfies the first criterion noted above.

To satisfy the second criterion, we appropriately

modify the demand surface achieved through Eq. (1).

More specifically it might be desirable to intensify

pollution monitoring in areas where the density of a

population of interest is high. Here, we intensify demand

for pollution monitors in areas with high densities of at-

risk populations. That population group might have

demographic characteristics of importance for the

intended health study, such as children or the elderly.
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To achieve this effect, a weighting scheme is implemen-

ted according to the equation

W R ¼
PR=PT

ĝR=ĝT

. (2)

Here PR is the population of interest in region R

within the study area and PT is the same population for

the entire study area. Thus, the numerator represents the

proportion of the total population of interest in the

study area that resides in region R. Similarly, the

denominator represents the proportion of the total

variability for the entire study area that can be

attributed to region R. The weight WR is applied to

g
_
ð~x; ~hÞfor each location x

*
that belongs to region R. The

weighting scheme is designed so that the ratio of

variability estimates for any two locations within region

R remains unchanged after weighting. At the same time,

the variability for all locations within region R is

augmented by the proportion of the population of

interest within region R. Furthermore, the total varia-

bility for the entire study area is maintained at the

unweighted level.

The approaches used in the literature can be classified

into two main groups. The first makes use of informa-

tion theory and devices optimization methods that

locate a given number of monitors in a network so that

the information content in the collected data is

maximized or the uncertainty is minimized (Caselton

and Zidek, 1984; Caselton et al., 1992; Silva and Quiroz,

2003). The same idea is applied to evaluating the

effectiveness of a government monitoring network of
Fig. 1. Study area in Sou
stations or optimizing the information gain by locating

an additional fixed number of new monitors. The second

group uses kriging, a geostatistical spatial interpolation

technique. The idea is to locate the monitors of a

network so that the mean square prediction error (or

kriging variance) is minimized (Trujillo-Ventura and

Ellis, 1991; Haas, 1992). This method ensures adequate

coverage of the study area, since it is well known that the

kriging variance is higher in places of sparse sampling.

The basic idea for our approach comes from the

statistical stratified sampling theory, whereby strata

associated with higher variability are sampled more

intensively. The method relies on the identification of the

pollution surface variability over the study area. It is

designed for capturing the small-scale spatial variability

of pollution, especially around expressways in urban

areas. As with the other methods, additional objectives

in the optimization problem can be added, such as

increased sampling in areas of high population density.

An advantage of our method is that it relies on well-

developed location theory and the associated optimiza-

tion algorithms, known as L-A.

2.2. The study area and data

For the derivation of an initial estimate surface of

pollution over the city of Toronto we used available data

from a network of fixed monitoring stations in South-

Central Ontario; a densely populated conurbation

extending from St. Catherines to Oshawa (roughly

200 km, see Fig. 1) and encompasing Toronto.
th-Central Ontario.
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Predictors of NO2 pollution in a LUR model were

derived from land use and transportation data acquired

from a commercial source, Desktop Mapping Technol-

ogies Incorporated (DMTI), Markham, Ont., Canada.

Population data at the census tract (CT) level were

obtained from the standard tabulations of census data

provided by Statistics Canada.

Toronto, the study area, is Canada’s largest city with

an estimated population of 4.7 million people (Statistics

Canada, 2001) and an approximate area of 633 km2.

Located on the north shore of Lake Ontario (431 390N,

791 230W), it is classified as being in the ‘‘Humid East’’

region of temperate North America (Getis and Getis,

1995). Similar to other large cities in North America,

many expressways traverse the Toronto landscape,

including some of the busiest in North America. For

example, Highway 401 has an estimated flow of about

400,000 vehicles per day.

Monitor deployment in Toronto, based on the

locations derived with the method we describe in this

paper, occurred in the time period 9–25 September 2002,

at 100 locations. OgawaTM passive samplers were used

to measure concentrations of NO2. We deployed two-

sided samplers in pairs of two (yielding four observa-

tions per location) at a height of 2.5m. All samplers

were removed 14 days after their installation. We used

ion chromatography to determine the nitrite content on
Fig. 2. Elements of a land use regression model showing monitor

characteristics within buffers as the predictor or independent variable
collection pads (Gilbert et al., 2003). This field sampling

yielded 95 valid measurements. Five samples were lost

due to vandalism or equipment malfunction.

2.3. Estimating the initial pollution surface as input for

the location-allocation model

To estimate the initial pollution surface for determin-

ing the spatial variability, we employed a LUR. LUR

uses pollution concentrations as the dependent variable

and proximate land use, traffic, and physical environ-

mental variables as independent predictors. This meth-

odology thus seeks to predict pollution concentrations

at a given site based on surrounding land use and traffic

characteristics. Specifically, this method uses measured

pollution concentrations (y) at locations (s) as the

response variable and land use types (x) within circular

areas around s (called buffers) as predictors of the

measured concentrations (see Fig. 2). The incorporation

of land use variables into the interpolation algorithm

detects small-area localized variations in air pollution

more effectively than standard methods of interpolation

such as kriging (Briggs et al., 1997, 2000; Lebret et al.,

2000).

Mean NO2 estimates at 16 locations shown in Fig. 1,

operated by the Ontario Ministry of the Environment

(MOE), served as the dependent variable in the LUR.
ing locations for NO2 as the response variable and land use

.
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The 1999 NO2 annual mean values at the 16 MOE air

monitoring stations in the study area range between 12.4

and 28.4 parts per billion (ppb). Independent variables

were obtained by measuring the respective area and

length parameters within circular neighbourhood buf-

fers centred on the MOE station position. Accurate geo-

referencing was essential for the locations of pollution

monitoring sites, roads and houses due to the highly

localized nature of the estimates. We used a global

position system to mark all the monitoring sites

(ground-level accuracy of 7 m or less). Field validation

of the DMTI land use coverage revealed high accuracy

in attribute classification and spatial coordinates.

Land use variables were calculated in hectares and

road lengths in kilometres. These variables were

measured under a circular buffer that extends from

each monitoring location out to a radius of 100m. Road

length parameters were measured under two separate

buffers. A first circular buffer extends from each

monitoring point out to a radius of 50m. A second

buffer is in the shape of an annulus (donut), with the

inner edge at a radius of 50 m and the outer at 200 m. All

area and length calculations were performed using

ArcView 3.2 software’s Spatial Analyst extension (ESRI

Corp., Redlands, CA, USA).

In total, 16 land use and transportation variables were

tested in a manual stepwise regression with S-Plus 6

software (Mathsoft, Cambridge, MA) to obtain a best

estimate pollution model. A bivariate ordinary least-

squares regression analysis was used in the initial step to

develop a model that predicts the best pollution surface.

The variable selection criterion was set at po0:25

statistical significance for subsequent consideration of

the variable (Younger, 1985). The most statistically

significant variables were sequentially included until a

parsimonious model was achieved. While most variables

included in the model achieved statistical significance at

conventional levels (i.e., po0:05), we relaxed this

criterion if inclusion of the variable eliminated other

problems with outliers.

The resulting estimated LUR model was subsequently

used to predict NO2 values for all cells of a grid imposed

over Toronto at 5m resolution. For a given grid cell,

values for independent variables of the LUR equation

were calculated within the same neighbourhood around

the centre of the grid cell as they were initially calculated

for inclusion in the regression equation. If in the

regression equation, for example, a significant indepen-

dent variable is the length of expressway portions that

fall within 50m of a NO2 measuring station, then for the

prediction of NO2 for a given grid cell we construct a

50m radius circle around the centre of the grid cell and

calculate the length of the expressways within that circle.

The 5m resolution was chosen to allow a reasonable

approximation of the vector dataset into raster format.

The result of this exercise was a first approximation of a
pollution surface that is subsequently used to derive a

monitoring demand surface. Our first task towards this

end is to calculate the spatial variability of the pollution

surface at every single grid cell, as described in the next

subsection.

2.4. Creating a surface of monitoring demand

Air pollution over a study area is spatially continuous.

Consistent with geostatistical modelling, we assume that

any pollution measurement zðx
*
Þ at location x

*
is a

specific instance of a random variable Zðx
*
Þ at the same

location. The random variable Z over locations in the

study area represents the spatial stochastic process

under study. Because of the presence of second-order

effects (autocorrelation), we expect the correlation of

any two such random variables to diminish with

distance, while the variance will increase (Webster and

Oliver, 1990). Previous results of NO2 monitoring

(Hewitt, 1991; Gilbert et al., 2003) suggest that little

correlation exists if the distance between any two points

j h
*
j is ‘‘sufficiently large’’. Also, while correlation varies

according to topography and meteorology, 80–90% of

traffic related effects come from less than 150–300 m

away (English et al., 1999; Briggs et al., 2000). Thus, we

select as the maximum distance within which to examine

local variability of pollution to be 300m.

On the basis of these observations, a suitable

operational estimator of local variability of NO2

pollution at location x
*

is obtained from Eq. (1) by

fixing the maximum distance j h
*
j to be equal to 300 m:

ĝðx
*
Þ ¼

1

2

X
j h
*
jp300 m

zðx
*
Þ � zðx

*
þ h

*
Þ

� �2

. (3)

It is worth noting that in Eq. (3), location x
*

is

represented by the centre of a 5 m grid cell. Variability

for a given grid cell x
*

is calculated by applying the

summation in the right-hand side of Eq. (3) over the

pairs that are formed between x
*

and all the cells within

300m from x
*
: By contrast, for a semivariogram

estimator, the summation in the right-hand side is over

all location pairs that are a certain lag j h
*
j apart, and the

calculation is perfomed over several lags to determine

the semivariogram function. Thus, while Eq. (3)

resembles the standard semivariogram equation, its

usage in the present context is different. To determine

the surface of the monitoring demand, Eq. (3) is applied

for all locations x
*

within the study region R.

2.5. Augmenting demand for socio-demographics

The demand intended for sampling stations computed

via Eq. (3) accounts for the need to represent pollution

variability. When deriving pollution exposures for

epidemiological studies, however, it may be desirable
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to measure more intensively in areas where the popula-

tion possesses particular socio-demographic (SD) char-

acteristics of interest. To achieve area-specific weighting

of the sampling network, we aim at increasing demand

in areas with high concentration of the target popula-

tions and decreasing it in areas of low concentration.

We start with the density of the population of interest

at the CT level making use of standard tabulation data

provided by Statistics Canada. We chose the CT level

because it provides a compromise between spatial detail

and area homogeneity. Statistics Canada’s CTs are

equal in size to neighbourhood-like areas, having

approximately 2500–8000 people (average population

�4000). CT boundaries generally follow permanent

physical features, such as major streets and railway

tracks, and attempt to approximate cohesive socio-

economic areas, but may not do so because of

subjectivity in unit selection or neighbourhood change

over time.

We transform the CTs population densities into

population counts at the level of grid cells with 5 m

resolution. We then aggregate the population counts to

grid cells of 2500m resolution. This is done to account

for the spatial subjectivity built into the CT unit. A

further advantage of re-aggregating the CT-derived

population surface is that the weighted surface is

unlikely to have gaps in areas where the population is

low. The re-aggregation thus ensures that the final

demand surface represents both the population density

and pollution variability.

The weighting was implemented as a bivariate linear

rescaling of the pollution variability surface. This

process conserved the total amount of demand in the

initial variability surface. The exact formula we used is

an adaptation of Eq. (2) as follows:

W 2500 m ¼
P2500 m=PT

ĝ2500 m=ĝT

, (4)

where P2500 m is to population of a grid cell at 2500 m

resolution and PT is the total population of the study

area calculated as the sum of populations for all grid

cells at the 2500m resolution. ĝ2500m is the variability in

a 2500m resolution grid cell. For the purposes of this

paper, the population at risk was children 6 years of age

or younger. By multiplying the derived W2500m value

with the variability value for all grid cells, a modified

demand surface is derived. In subsequent health studies,

this exposure assessment will assist with testing the

association between onset of childhood asthma and

traffic pollution in a case-control design.

2.6. Computing monitoring locations using demand

The discussion of computing demand does not

address the issues of calibration, reliability or validation

of the NO2 measurements. For purposes of reliability, it
is advisable to deploy two or more passive samplers at a

single location; the measured value at a location is taken

to be an average of the measurements at that location. A

further level of accuracy is added to our network by

calibrating the measurements against the collected MOE

data using continuously operating active monitors. This,

however, entails that the MOE stations be used as

sampling locations in our network.

The remainder of this section details a technique for

computing the locations of n number of monitoring

stations, assuming that n is a specified constant before

the computation. The computation of the locations

begins by calculating the locational demand for a grid at

500m resolution. For Toronto, the centroid of each of

the grid cells results in a lattice of 2537 potential

locations, which we refer to as ‘‘candidate locations’’.

The goal of our L-A procedure is to select n primary

station locations taking into account the demand surface

for monitoring that we have created. In formulating this

problem as a classic facility location problem, we

constrain ourselves to problems solved using the ESRI’s

ARC/INFO software. This software offers two options:

the P-Median Problem or P-MP (ReVelle and Swain,

1970) and the Attendance Maximizing Problem or AMP

(Holmes et al., 1972). For our particular problem, we

have 2537 candidate locations for 100 monitors to be

located (n ¼ 100). The candidate locations also act as

the demand locations. Each demand location is weighted

by the value of the demand surface in that location.

The P-MP places the 100 primary stations in a way

that the sum of weighted distances for all demand

locations from their nearest station is minimized. The

AMP, on the other hand, locates stations so as to

maximize an objective function of the form

Z ¼
Xk

i¼1

Xm

j¼1

wi 1 � bdij

� 	
xij , (5)

where k is the number of demand locations and m is the

number of candidate locations. In our case k ¼ m ¼

2537: The weight wi at location i represents demand,

while dij is the distance between locations i and j: xij is

the allocation decision variable attaining the value of 1 if

demand location i is served by a station in j and 0

otherwise. Attendance linearly decreases with distance at

the rate of parameter b; the value of which is determined

by the particular problem in hand. For our case, we

assume that attendance becomes negligible or 0 for a

distance of 1.5 km, thus b is determined by solving the

Eq. (1)�b1.5 ¼ 0, which leads to b ¼ 0.67.

The above discussion suggests that the AMP for-

mulation provides better control and is thus better

suited than the P-MP formulation for our particular

problem. The assumption that attendance becomes zero

for a distance beyond 1.5 km is justified on the basis of

previous research. Findings suggest that concentrations
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of NO2 and other pollutants decrease away from

polluting sourses (English et al., 1999; Gilbert et al.,

2003). The measured decay of concentration around

Canadian highways is such that no correlation exists

between the highway and a point 300 m away from the

highway. For the purposes of the model we assumed this

distance to be 1500 m. The definition of the allocation

decision variable xij above provides one of the five

constraints of the constrained optimization AMP. Other

constraints restrict the number of stations to be located

to exactly n ¼ 100, and ensure that no two stations are

located in the same place.

The actual computation was performed using the L-A

functionality of ESRI’s ArcPlot module of ArcGIS. We

set the optimization criteria to be the ‘‘Maximum

Attendance (MaxAttend)’’ problem, and then ran the

L-A function. Near-optimal or ‘‘heuristically optimal’’

solutions to these types of computationally intensive

problems can be found in a reasonable amount of time

using proven heuristic techniques. The Global Regional

Interchange Algorithm (GRIA) (Densham and Rush-

ton, 1992) is appropriate for large datasets because

running time is linear with respect to n, which allows for

computation with current desktop computing technol-

ogy. The grid resolution affects the optimality of the

solution. Given n ¼ 100, the choice of a 500	 500m2

grid of demand locations made for a problem of

reasonable size for desktop computers that could be

easily replicated by others.
3. Results

3.1. Monitoring location selection

Results of the initial LUR are displayed in Table 1

and include regular diagnostic values such as sum of
Table 1

Initial land use regression model used for location allocation procedu

Source SS df

Regression 213.89 4

Residual 130.68 11

Total 344.58 15

Variable Coefficient Std. error

NO2 (ppb)

Constant 18.058 1.353

Commercial 5.223 2.080

Government/institutional 1.748 1.065

Expressway (0–50m) �592.725 228.883

Expressway (50–200m) 253.155 68.532
squares (SS), degrees of freedom (df), mean

square (MS), and a inter-variable collinearity

factor called the various inflation factor (VIF). The

table shows that commercial, government and institu-

tional, expressway (0–50 m), and expressway (50–200m)

are significant land-use and transportation variables in

predicting NO2 with the available dataset. Similar to

other LUR results (Briggs et al., 2000), some coefficients

take an unexpected sign (i.e., 0–50 is negative), but this

appears to balance the other positive signs in the

equation, and this model produced maximal prediction

with minimal bias (measured by the Mallow’s Cp

statistic) compared to other models we tested. The

pollution surface generated from this model had high

pollution concentrations predicted in the vicinity of the

expressways and relatively low pollution predictions in

other areas.

Modelled pollution values near expressways ranged

from 29.5 to 1502 ppb, while in other areas the pollution

estimates ranged from 18.1 to 34.5 ppb. Given the range

of the MOE NO2 monitoring concentrations and those

noted in other studies (Hewitt, 1991), such high levels

are unrealistic. Yet, independent of the actual values, an

important characteristic was preserved in the surface,

namely the simple relative pollution variability caused

by the different land uses—an indication that some areas

have higher pollution variability than others. The

variability was obtained by Eq. (3) using the obtained

pollution surface. The obtained surface of variability

appears to have much the same characteristics as the

pollution surface, with high values near expressways and

low values in other areas.

Proximity to expressway features dominated sampling

locations selected by the L-A model, as seen in Fig. 3.

About 95% of the stations were assigned to areas that

coincided with expressway features in the pollution

model. The other 5% of the locations satisfied the
re to locate samplers

MS

53.47 Number of obs ¼ 16

11.88 F(4,11) ¼ 4.5

Prob4F ¼ 0.021

R2
¼ 0.621

Adj. R2
¼ 0.483

t Prob4t VIF

13.348 0.000

2.511 0.029 1.0

1.641 0.129 1.1

�2.590 0.025 2.3

3.694 0.004 2.4
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attendance demand created by the surrounding express-

ways and consequently were located centrally.

In contrast, the population weighting method (PWM)

produced a well-distributed monitoring network, as

shown in Fig. 3. There is a low-level clustering in the

central west part of the city, an area with the highest

aggregation of child populations.

Once the L-A procedure was complete and alternative

monitoring networks were configured, it was necessary

to ascertain the monitoring networks’ capacity to

represent key land use and transportation criteria. Table

2 presents a comparison of the network developed by

taking into account only the pollution surface variability

criterion with the network that also took account of the

population distribution criterion (children of age 0–6).

The comparison of the networks is based on ten land-use

criteria that were used in the LUR model, as shown in

the first column of the Table. The second and third

columns are based on characteristics of all the 2537

candidate locations. They indicate that 245 of the

candidate locations are between 50 and 200 m

away from an expressway, while 96 of them are qwithin

50m from an expressway. Similarly, the pollution

variability criterion alone gives rise to a network

whereby 94 of the 100 stations are located between

50 and 200m away from an expressway as compared to

32 of the 100 stations located within the same distance

band from an expressway in the case where the

population criterion is also taken into account. This

indicates that the variability criterion alone produces a

much more concentrated network pattern around the

expressways.

This conclusion is strengthened by the observation

that in the variability criterion case 58 of the 100 stations

are located within 50 m of an expressway, compared

with 32 stations in the case where population is taken

into account. Similarly, the population-weighted surface

allocates more stations in residential areas and fewer

stations in industrial areas. The latter is probably

because expressways go through industrial areas.

Comparing the mean distance values of the two
networks with those of all the candidates reveals that

in six out of ten land use cases, the means are

significantly different for the variability criterion,

but in only two land use cases the difference in

means is statistically significant when population

weighting is used. We thus conclude that the popula-

tion-weighted surface produces a better representation

of the land use and transportation characteristics of the

study area.

3.2. Results from the Toronto deployment

Of the 100 monitors deployed in the Toronto area, 95

produced valid measurements. These locations were

used in a second LUR model to derive a predicted

surface of NO2. The arithmetic mean of NO2 values

(measured in ppb) for these 95 records was 32.71 ppb,

with values ranging from 17.41 to 77.31 ppb, which is

larger than the value we observed through the govern-

ment-monitoring network. In total, 79 land use,

transportation, population, and physical geography

variables were tested (see Jerrett et al. 2003 for more

detailed descriptions of the variables).

Logarithmic NO2 concentrations were negatively

correlated with the distance with the nearest expressway

and the area of open space within 400 m, while they were

intuitively correlated with road measures and dwellings

in the vicinity. The final regression model (shown below)

yielded a R2 of 0.633 (see Table 3).

These results confirm that in addition to contributing

to regional air pollution, urban traffic is a strong

determinant of intra-urban variation in air pollution.

Results also indicate that a combination of traffic and

land use variables could be used to estimate exposure to

traffic-related air pollution in epidemiologic studies on

the effects of air pollution on health. Unlike the initial

model based on the sparse monitoring network, which

we used to derive the variability of the initial pollution

surface, all the coefficients take the expected sign. This

LUR model also resulted in a predictive pollution

surface with the expected characteristics (see Fig. 4) with
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Table 2

Land use and transportation criteria represented by location-allocation models compared to candidate location values

Mean std. deviation Candidate N Variability criterion (VC) N VC+popul age 0–6 N

Distance 1783.6 2537 158.5 100 1631.7 100

1381.2 496.1 1620.2

Expressway 50–200 263.2 245 417.3 94 380.4 32

190.4 189.3 207.7

Express 0–50 44.8 96 52.2 58 50.2 20

29.7 32.5 30.7

Major 50–200 90.6 1151 91.9 58 100.5 63

45.3 46.0 49.9

Major 0–50 19.0 344 18.3 21 17.4 21

8.6 9.9 9.2

Minor 50–200 229.3 2264 128.8 76 200.4 93

119.6 93. 5 107.0

Minor 0–50 24.1 1474 18.3 30 22.9 52

10.7 10.6 10.1

Residential 100 856.8 1779 541.5 53 672.8 73

425.3 439.2 410.1

Industrial 100 660.8 774 594.0 45 649.3 36

459.2 403.5 453.8

Commercial 100 375.8 235 353.6 10 481.1 39

349.3 311.8 402.0

Gov. Inst. 100 415.7 434 659.3 10 451.1 19

394.0 469.7 435.1
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only slight over prediction near the expressways. Areas

in proximity to expressways and in the downtown core

appeared to have higher levels of NO2, while areas with

less development in the northeast of the city exhibit

lower levels.
4. Conclusion

With the increasing need to understand the spatial

distribution of air pollution at the intra-urban scale, the

methods developed here for locating air pollution

monitors have proven to be an effective and systematic

technique to maximize sampling coverage in relation to

important socio-demographic (SD) characteristics and

likely pollution variability. The location-allocation (L-

A) approach offers flexibility to integrate an assortment

of variables into the demand surface that can reconfi-

gure the resulting monitoring network. In this applica-

tion, the variable integration has been implemented with

a SD weighting of children 6 years of age and under.

Because we had to rely on sparse initial pollution data,

the population-weighted pollution surface also ensured
that the subsequent sampling locations would yield

useful results for human exposure assessment.

To validate this method, we plan to replicate the

entire modelling process using the pollution surface

generated from the 95 NO2 observations collected in

Toronto from our first round of monitoring. Assessing

the impact of availability of better pollution data on the

monitoring locations might have important implications

for the generalizability of this method. If we achieve

significantly different results from an improved input

pollution surface, then this L-A approach would be

effectively limited to the few places where spatially

extensive air pollution data are available or to the

second round of monitoring. If, however, the model

performs adequately with weaker pollution data com-

bined with SD population data, then the method may

have wide applicability to most urban areas. Given the

large influence of population weighting in our findings

and the subsequently reasonable results from the first

round of monitoring in Toronto, the method appears to

have considerable promise for improving the assessment

of exposure to ambient air pollution in epidemiologic

studies.
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Fig. 4. Land use regression model of NO2 concentrations (ppb) using 95 sampled values.

Table 3

Land use regression model created with 95 sampled data values

Source SS df MS

Regression 5.195 6 .866 Number of obs ¼ 95

Residual 3.009 88 .034 F(6,88) ¼ 25.318

Total 8.204 94 Prob4F ¼ 0.000

R2
¼ 0.633

Adj. R2
¼ 0.608

Variablea Coefficient Std. error t Prob4t VIF

LN(NO2)

(Constant) 3.460 .087 39.709 .000

DIST_EX �5.291E-05 .000 �3.554 .001 1.564

RD1_200 .197 .030 6.511 .000 2.058

RD3_3005 �4.078E-02 .015 �2.733 .008 2.101

RD2_500 6.949E-02 .019 3.664 .000 1.350

OPEN400 �1.036E-02 .003 -3.306 .001 2.265

DC2000 6.950E-05 .000 3.161 .002 1.652

aRD1_200—measure of expressway within 200m, RD3_3005—measure of local roads within a donut-shaped area with an inner

radius of 300m and outer radius of 500m, RD2_500—measure of major roads within 500m, OPEN400—measure of park, open,

recreational, or water body land within 400m, DC2000—density of dwellings within 2000m (Kernel estimate), DIST_EX—distance to

the nearest expressway.
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