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URBAN CLIMATOLOGY

5. Urban Remote Sensing

5.1 Remote Sensing Principles

DN = f(LST)

5.1 Remote Sensing Principle
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5.1 Remote Sensing Principle

Stefan-Boltzmann law: The thermal energy radiated by a blackbody is
proportional to the fourth power of the absolute temperature:

M - thermal energy
T - absolute temperature
o - the Stefan-Boltzmann constant
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M =oT
Real surfaces

M =¢eoT?

There are at least two problems in urban remote sensing:

€ - emissivity

1) How to determine emissivity of real surfaces in highly
heterogeneous urban environment

2) How to recalculate LST - Land Surface Temperature to air
temperature

5.2 LST derivation from LANDSAT
Lsensor,z = [UB/I(TS) + (1 - E/I)Li[m,}l T+ LT
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Emissivity map of basic land cover types @ﬂ LST derivation from ASTER data
7 (more thermal images)

bare ground
vegetation
byl built-up area 0,925

Emissivity values This is a weak point|
of mono window
(Snyder et al. 1998) algorithms &)

2001 — mean 2006

50 50
[ std. deviation
T min-max

4 r

» ﬁﬂ ,,,,,, 0 »

0 5 10 15 20 25 30 35 40 45 50 10 l T 10
LST[C] Urban Rucl Urban Rural
Examples of SUHI analysis Another useful Remotely Sensed variables for UC
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3. Land use mapping, vegetation mapping
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Various parameters derived from 3D model of buildings and from Digital
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Spatial distribution of land classification (left) and SUHI magnitude (right) within Elevation Model explain spatial variability of land surface temperatures.

Birmingham city extents for heatwave event at 18 July 2006 (Tomlinson et al., 2010
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Precipitation and weather RADAR Precipitation and weather RADAR
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Spatial distribution of radar reflectivity Spatial distribution of daily precipitation
(maximum values in vertical direction) ~ totals (mm) computed as a combination of N T R——
measured at meteorological radars radar-based precipitation estimate and rain- ——
Skalky and Brdy at 15 July 2009, gauge measurements from 15 July 2009
19:25 hours of central European (measured at 16 July 2009, 08 h central = o
summer time European summer time). Stations with

higher precipitation totals are preferred in
the map. Spatial distribution of precipitation
totals is givenin 1 x 1 km grid

Frequency of the above-average maximum radar reflectivity in Brno region composed
from 26 situations with extreme convection at Tufany station in the period 2000-2007

5.5 Final remarks and questions @’I

1. What are limitations of URS in terms of spectral, spatial
and temporal resolution?

2. What are the main benefits of URS for heat wave studies
compared to air femperature analysis?

3. How can be URS used for practical urban planning, regional
development and for better adaptation to climate change?




