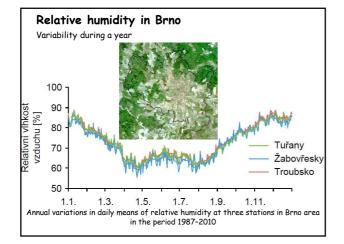
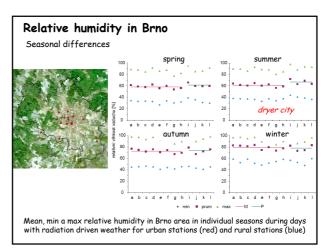
URBAN CLIMATOLOGY

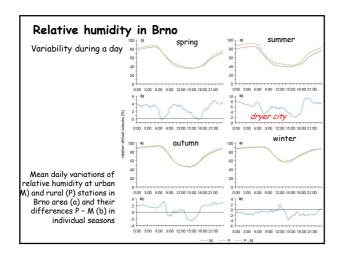
VII. Spatio-temporal variability of other meteorological elements in urban areas

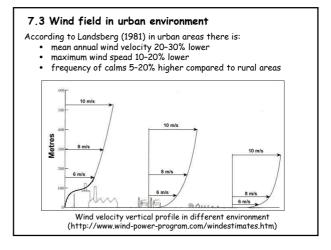
Table U2 Urban climate effects for a mid-latitude city with about 1 million inhabitants (values for summer unless otherwise noted) 7.1 Urban Variable Change Magnitude/comments climate effects 10–50% 5–30% at 10 m in strong flow In weak flow with heat island 1–10 degrees 25–90% 1–25% 5–40% Turbulence intensity Wind speed Greater Decrease Increased Wind direction UV radiation Solar radiation Altered Much less Less Greater Infrared input Visibility Evaporation Convective heat flux Reduced About 50% About 50% About 200% Less Greater Heat storage Air temperature About 200%. 1–3°C per 100 years; 1–3°C annual mean up to 12°C hourly mean Summer daytime Summer night, all day winter In and downwind of city Especially in lee of city Warmer More moist More haze More cloud More or less Especially in lee of city Depends on aerosol and surroundings Precipitation Some turns to rain To the lee of rather than in city

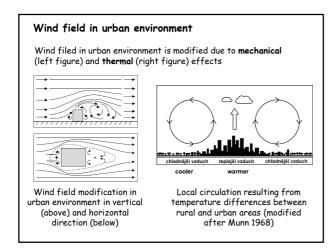
7.2 Humidity in urban areas

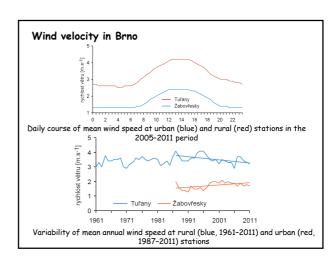

 Spatial and temporal variability of air humidity in urban areas is the result of evapotranspiration, condensation and advection processes.

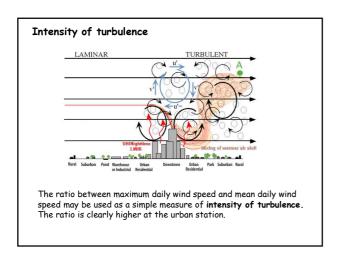

There are several positive and negative feedbacks.

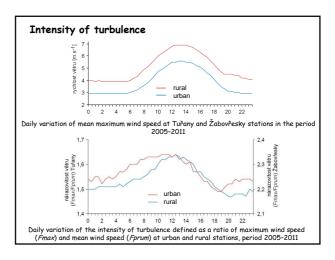

- Higher temperature -> higher intensity of evapotranspiration (that is however low due to lack of vegetation
- No consumption of latent heat -> rising temperature
- Fast runoff -> les intensity of evaporation
- Urban dry island

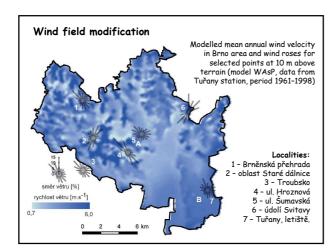

Humidity in urban areas

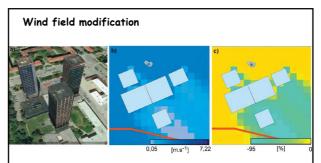

- Atmospheric humidity is generally lower in cities during daytime (due to lower evapotranspiration compared to rural areas - there is smaller fraction of vegetation cover)
- At night and in winter there is an urban moisture excess (UME) in mid- and high latitude cities. The reason is: i) additional water vapor from anthropogenic activities; ii) weak evapotranspiration in unstable atmosphere
- In some situations (dry spells, arid climate) humidity can be higher in cities due to extensive irrigation compared to neighborhoods
- Bad air quality mostly cause increase of fog frequency and intensity











Modification of wind speed near obstacles calculated using WASP model – an example for for high-rise buildings (60 m) at Šumavská str. a) study area (black – buildings, green – roughness, red – altitude); b) mean wind speed near buildings for NW wind direction; c) relative reduction of mean wind speed near buildings for NW wind direction

7.4 Final remarks and questions

- 1. How does the vegetation in urban areas influence humidity?
- What is a typical variability of humidity in urban area during a day and during a year?
- 3. What are main factors modifying wind field in urban areas
- 4. What can be the most important negative effects of wind field modification in urban areas?