

Artificial Intelligence

in Microbiology

by Stanislav Mazurenko, PhD

mazurenko@mail.muni.cz

Microbiological Seminar, Brno, 2021

- Motivation
- □ Introduction to AI and ML
- **Recent applications in Microbiology**

Motivation

Motivation: sequences and chemicals

- Large volumes of digital data
- Affordable computing power and storage
- Complex study objects

4/22

Motivation: big experimental data

Current Opinion in Biotechnology

10 0000 0000 0000 000

5/22

Source: Scheler et al. "Recent developments of microfluidics as a tool for biotechnology and microbiology." Current opinion in biotechnology 2019 Khater et al. "Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches." Lab on a Chip 2020.

Motivation: cell imaging

Introduction to AI and ML

Introduction to AI and ML

- Recommendation engines
- Image & speech recognition
- Anomaly detection
- Natural language processing
- Data mining...

Introduction to AI and ML

Introduction to ML

Faces

Not faces

- Historically, people tried to find rules themselves, e.g. detection of particular shapes or color contrasts;
- Often such manual rules are too simplistic to give good results;
- Machine Learning gives the means to generates those rules automatically!

Basics of ML: data representation

MKKLGRAATNKAAKEVLDYCGEAKG...

Feature vector: (5, 1, 1, -5.67, 0.69, ...)

Examples:

- AA frequency
- AA sequence
- Conservation scores
- Structural elements
- ...

	One-hot encoding:
A K L G R T	$\begin{array}{c} K \ K \ L \ G \ R \ A \ A \ T \ \ldots \\ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ \ldots \\ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \ldots \\ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ \ldots \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \ldots \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ \ldots \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ \ldots \\ \end{array}$

Source: Goodswen et al. "Machine learning and applications in microbiology." FEMS Microbiology Reviews (2021). 11/22

Basics of ML: training

Basics of ML: training

Basics of ML: validation

- The goal of ML is to identify generalizable patterns in your training data.
- These patterns must be valid for future data!
- Therefore, the core of ML protocol is to evaluate the predictor on the test data, hidden from the predictor:

Artificial Neural Networks

Recent applications

Overview

Microbiota: 17	Non-infectious disease diagnosis and classification: 10
Volatile organic compounds: 6	
Bacterial colonies photographs: 4	Infection diagnosis and clinical outcomes: 14
Clinical data: 3	
Transcriptome: 5	
Spectroscopy: 17	Micro-organisms detection, identification and quantification: 40
Microscopic images: 19	
Whole Genome Sequencing: 19	Evaluation of antimicrobial resistance: 35
Targeted gene sequencing: 6	
Protein structure: 3	

Source: Peiffer-Smadja et al. "Machine learning in the clinical microbiology laboratory: has the time come for routine practice?" Clinical Microbiology and Infection 2020

A convolutional neural network was able to discriminate between 18 classes of bacterial colonies.

Source: Huang, Lei, and Tong Wu. "Novel neural network application for bacterial colony classification." Theoretical Biology and Medical Modelling 15.1 (2018): 1-16.

18/22

Identification of pathogens

Antimicrobial resistance

Source: Khaledi Ariane et al. "Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics." EMBO molecular medicine 12.3 (2020): e10264.

Clinical outcomes

Source: C4X Discovery, Fernández-Torras et al. "Connecting chemistry and biology through molecular descriptors." Current Opinion in Chemical Biology 66 (2022): 102090.

- Machine Learning method is a powerful data-driven alternative to traditional modelling;
- One turns data into numbers (features) and trains a generic algorithm to discriminate between labels in the feature space;
- It is essential to have a separate test set for evaluation of the resulting predictor;
- In Microbiology, a wide range of tasks is already solved by Machine Learning.

Bi9680En: AI in Biology, Chemistry, and Bioengineering

- Období: podzim
- Rozsah: přednáška 2 hodiny/týden
- Vyučující: Dr. Stanislav Mazurenko
- Osnova:
 - modern bio-challenges: drug design, DNA interpretation, protein engineering
 - types of AI algorithms and workflow for designing predictors
 - clustering algorithms, random forests, artificial neural networks
 - features, databases, and predictors used in applications

