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What are ,-omics” technologies

 Omics refers to a field of study in biology ending in -omics, such as
genomics, proteomics or metabolomics

* The related suffix -ome is used to address the objects of study of such
fields, such as the genome, proteome or metabolome

-ome = many/collectivity or whole/all/complete in Greek
-omics = study of large sets of biomolecules

High-throughput experimental technologies characterized by
automation, miniaturized assays and large-scale data analysis

Analytic part of the experiment is usually much longer than the experiment
itself — bioinformatics skills needed

Raw data is the ,gem* but usually is in user unfriendly format

Interpreting functional consequences of millions of discovered events is
one of the biggest challenges



Big —omics data challenges
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Only skilled bioinformaticians can process raw data
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Integrated analyses of —omics studies are only possible in
large consortia (e.g. TCGA). Subsequently, the authorlist of
such articles can more than 2 pages long with substaintial part
of the authors being bioinformaticians. Among the reviewers,
bioinformaticians are also necessary, etc.
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Data sharing policy

The concepts of data sharing and open data are becoming increasingly
Important in science

« Funding bodies, journals and societies are now encouraging or mandating
data sharing (usually the raw data)

« Sharing data publicly is an important way of improving reproducibility and
showing that researchers are confident in their work

« Studies with raw data shared in a repository also receive more citations than
those without publicly available data

e But raw -omics data Leveraging Public Databases to Identify Actionable Targets

are hard to analyse, Target Drug Drug response biomarker
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DIKW pyramide

,Data is not information, information is not knowledge, knowledge is
not understanding, understanding is not wisdom.” — Clifford Stoll

High L ow
/\ Wisdom /\
Meaning Knowledge
Applicability
Transferability Computer Input
Value Programmability
Human Input Information
Structure
Low High

Jennifer RowleyPublished 2007 in J. Information Science DOI:10.1177/0165551506070706



In Genomics:
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What is the aim of OMICS technologies
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What is personalized health care?

4 e

Personalized medicine, sometimes referred to as precision or
individualized medicine, is an emerging field of medicine that
uses diagnostic tools to identify specific biological markers, often

genetic, to help assess which medical treatments and procedures 'l
will be best for each patient. / WWM

X
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Value of personalized medicine

e

Oncology is on the Leading Edge of Personalized Personalized Medicine Can Create Efficiencies in the
Medicine Health Care System

In ten years, cancer patients have seen a four-fold increase in their personalized medicine
treatment options.

Metastatic
Colorectal Cancer

Breast Cancer

Stroke

Breakdown of Oncology Treatment Modalities,
Global Market share 2003-2013*
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rancar driugs. Reduction in chemotherapy savings would be realized prevented each year
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PERSONALIZED MEDICINES ON THE MARKET A greater understanding of the molecular basis of disease has

5-Year Survival Rates for CML Patients

transf d what k llectivel “di f
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the blood,” into multiple subtypes of leukemias and lymphomas
with a 5-year survival rate of 70% collectively.

0
27%
of all NMEs approved by

the FDA in 2016 are
personalized medicines.

89%

Nearly 250

medicines are in development
for blood cancaors

v

6 year survival rates have

grown to 70%

50%
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r——— 11— 1
2012 2016 And many more examples, see http://www.personalizedmedicinecoalition.org for more detailed information on PM



http://www.personalizedmedicinecoalition.org/

What 1s a biomarker?
/_—

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of
normal biologic processes, disease processes, or biological responses to a therapeutic
intervention. Biomarkers can be used to reduce uncertainty and guide clinical care.

Bi kers Help Inf Medical Decisions:
Molecitlar Biomarkers Can Include: —;O?r?e:f:r:iio: fner;:urgs? ARSI -OMICS
- Which diagnosis? tEChnOIOgieS
—> Treat or don’t treat? :
- What dose? _ and th?Ir
integration
How Do You Detect a Biomarker? iS Crucial for
- Diagnostics .
- Blood draw blomarker
- Microscopic analysis discovery
- Gene sequencing
= Biopsy and
- Protein analysis Validation

Proteins

Source: National Cancer Institute, “NCI Dictionary of Cancer Terms” (accessed M



History of ,-omics” technologies

« Genome — central part of all Brief History of DNA Sequencing
—O0m iCS teChnOlOgieS 1953: Discovery of DNA structure by Watson and Crick

 NGS = next generation
sequencing

1973: First sequence of 24 bases published

Sanger VS NGS
SRS Gone: 1977: Sanger sequencing method published
Human Genome 3.3x10° ~20,000

1982: GenBank started

Sequencing of the human
genome using Sanger
technology took more than
a decade and cost an 1987: 1% automated sequencer: Applied Biosystems Prism 373 (up to 600 bases)
estimated $70 million

dollars

1996: First Capillary sequencer: ABI310

In 3 days (one run), lllumina HiSeq 4000 2000-2003: Human Genome Sequenced
is able to produce 1,680x10° bases for
~$32,000

2005- : First NGS sequencers 454 Life Sciences, Solexa/lllumina, Helicos, lon Torrent

v

© slideshare.net



Sanger vs next generation sequencing

NGCS

MASSIVELY

Sanger sequencing SE
https://www.youtube.com/watch?v=e2G5zx-OJlw igaEaems
SpP 4,

%*”‘;ﬂc
Next generation sequencing (lllumina is shown as an example)
https://www.youtube.com/watch?v=9YXEXT SwgPM
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®) o frer atete bp) Tein Short read length
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Can target a primer Need for clonin
9 P 9 Runs take multiple days
£ 3 An image of
& T P r—) Used to confirm NGS results Amount of data per run hundreds of  High startup costs
extended
- Seeing is believing molecules D& Novo assembly

difficult
https://slideplayer.com/slide/5799907/



https://www.youtube.com/watch?v=e2G5zx-OJIw
https://www.youtube.com/watch?v=9YxExTSwgPM

lHlumina NGS overview
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The € of Sequencing a Human Genome.

U.S. National Human Genome Research Institu
Accessed June 5, 2020, at http:'www.genome.gov/sequen
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gcosts.




DTC (direct-to-customer) genetic testing

> ancestry FREETRIAL  SIGNIN >

Give the gift that hasicon
20 million members to &

ONLY$5

Give AncestryDNA®

-

*Offer ends 11/21. Excludes taxes and sh:ppi _

@ Build a family tree to see your story emerge. |

http://ancestry.com/



Genotyping vs Sequencing

 Genotyping - determining which genetic variants an individual possesses
through a variety of different methods, especially genotyping chips

R 1T

Ancestry + Traits Service

$99$79

If you want the most comprehensive

aaaaa try breakdown on the market.

» 2000+ Geographic regions

» Automatic Family Tree Builder
s 30+ Trait reports

» DNA Relstive Finder

* Learn more

(based mostly on SNPs — single nucleotide polymorphisms)
- cheap, but require prior identification of the variants of interest

=
>
i AT
t 40 i
AN sm B8 L1}

Health + Ancestry Service

$199599

If you want to get a more complete
picture of your health with insights from
your genetic data.

« Everything in Ancestry + Traits, plus...

* 65+ health reports and features
including:

* Health Predisposition reports®

= Wellness reports

» Carrier Status reports®

« Family Health History Tree

-

" ii i -n
it R
AN sm N8R -

23andMe+¥ Membership

$499  $20
$99 $9.99
kit ona year prapaid
membership
If you want our Health + Ancestry Service
plus access to new premium reports and
features throughout the year.
+ Everything in Health + Ancestry, plus...

» Instant access to exclusive reports and
features, including:

* Heart Health reports

Methods

We use genotyping technology to look at specific genetic variants in
the genome that can be most informative about an individual’s health

and ancestry.

Unlike sequencing which analyses all nucleotides in a gene to identify changes, genotyping

detects specific known variants within the genome. 23andMe uses a custom lllumina

HumanOmniExpress-24 format chip that analyses approximately half a million variants. This

custom chip has been designed to include variants:

- In medically relevant genes

- Involved in drug metabolism, efficacy and side effects
- With known disease associations

- Associated with traits

- Used to assign genetic ancestry and ethnicity

https://mwww.23andme.com/



How SNP genotyping works

e https://www.youtube.com/watch?v=Naonaly 12U

 For more information see YouTube Channel Useful Genetics:
https://www.youtube.com/channel/UCtXCrx28msMBO-vFUIOIReA
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jax.org/news-and-insights/jax-blog/2016/september/genomes-versus-exomes-versus-genotypes

SNP - Single nucleotide polymorphisms

the most common type of genetic variation

occur almost once in every 1,000 nucleotides on average, 4 to
5 million SNPs in a person's genome

may be unique or occur in many individuals; scientists have
found more than 100 million SNPs in populations around the
world

most commonly in non-coding DNA

can act as biological markers, helping locate genes associated
with disease

most SNPs have no effect on health or development

some SNPs have proven to be very important in the study of
human health.

may help predict an individual’s response to certain drugs,
susceptibility to environmental factors such as toxins, and risk
of developing particular diseases.

SNPs can also be used to track the inheritance of disease
genes within families



https://www.youtube.com/watch?v=Naona1y_I2U
https://www.youtube.com/channel/UCtXCrx28msMBQ-vFUIOIReA

How SNP genotyping works
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There are two types of microarray commonly used in multiplexing SNP analysis: allele-specific oligonucleotide (ASO)
hybridization and allele-specific primer (ASP) extension. (A) ASO hybridization: The allele-specific oligonucleotide for every
SNP is synthesized and separately immobilized onto the glass plate. Fluorescence labeled targets containing SNP sites are
produced from a PCR reaction and plotted separately into each well to conduct the hybridization reaction. The mismatched
base pair between target and oligonucleotide can decrease the binding strength with the fluorescence-labeled target removed
after a stringent washing. A fluorescence signal is detected on a perfectly matched base pair; (B) Allele-specific primer (ASP)
extension: The specific primer for SNP location is designed and separately immobilized onto a microarray. A different
fluorescence labeled dNTP is individually used in an extension reaction. The extended fragment showing fluorescence signal
can only be found when the 3' end of primer pair is perfectly matched (AA type in this case) in contrast to the mismatched
primer pair (GG type in this case); (C) The SNP genotype can be determined according to fluorescent intensity from the
products/target DNA. https://doi.org/10.3390/microarrays4040570



DTC genome sequencing as popular demand

<7 O

st the most comprehensive DN] t,gst
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Anal e-100% of Y DNA at only €499

Coverage (or depth) in sequencing

Read 1: CGGATTACGTGGACCAIG (read length of 18)

Read 2: ATTACGTGGACC AATTGCTGACA

Read 3: A(CA“GAATTGCTGACATTCGTCA
Read 4: AATTGCTGACATTCGTCAT

Depth: 1112222222223333843333333333322222221

WHAT YOU GET

| Dante Labs analyzes 100% of your DNA, so that we can give you reports on predispositions on any genetic disease.

: : My Full DNA: Whole G 5 i
You will receive easy reports for you and your doctor, as well as raw data to explore. g _fhe fnnrx?:e =AHERtg
with m

www.dantelabs.com YOU SAVE €401.00 EUR



Sequencing — WGS and WES

/

o

« Determining the exact DNA sequence Whole Genome Sequencing

~3,000,000,000,000 bases (100% of human genome)

Whole Exome “Non-coding DNA” was long

Sequencing thought of as junk DNA, but as
we understand more about our

(-622}og$ﬁ::1::sziome} T S genetics we now know these
e g O T regions play a hugely important

role in regulating the coding

L S | p— portions of our DNA. Our
arge Cia € = . understanding of these regions
Genotypln g and their interactions is

relatively poor compared to our
~1,000,000 bases knowledge of the DNA coding
(~0.03% of human genome) regions.

https://www.mygenefood.com/finding-best-dna-test-genotype-sequence/




Genomes VS exomes VS genotypes

WGS WES Hotspot sequencing =
Whole genome sequencing Whole exome sequencing Targeted sequencing
D000000000C OO 2poopoood
- - -_- -_- = _-- -- - -_- -u- = = :
e E S ot e ' T e g = = -
2 = =X

/; Seguencing region :\ /; sequencing region: \ /; Sequencing region: \
whole genome whole exome specific regions
B Sequencing Depth: B Sequencing Depth: (could be customized)
>30X >50% ~ 100X B Sequencing Depth:
B Coverseverything- B |dentify all kinds of =500
can identify all kinds variantsincluding B |dentifyall kinds of
of variants including SNPs, INDELs and SV variants including
SNPs, INDELs and SV. in coding region. SNPs, INDELs in
B Cost effective specific regions
\ _/ \ _/ \l Most Cost effective /
* Results are sometimes * Good alternative to WGS * Most sensitive — able to
challenging to interpret in terms of clinical use detect rare tumor cells in
a biopsy

https://2wordspm.wordpress.com/2017/10/30/ngs-%EA%B2%80%E C%82%AC-whole-genome-exome-targeted-sequencing-%EB%B9%84%EA%B5%90/



What to expect

Genetic testing provided by most of the
companies is moreless for fun
(ancestry, health and wellness, s opertortongedy || gt opor o

nutrigenetics, skincare, sports,...) S

How it Works

The Nutrigenomics report shows all

foods and ge in order to

erformance in the shortest

* More expensive, and complete, sequencing like the one provided by lllumina can be
used for medical investigation

Do not expect your genome sequencing to tell you how long is your life expectation,
whether you are likely to get cancer and so on

« So far our knowledge on the “implication” of the genome are quite limited

« What we can already do in health care Is to look at the genome once you have been
diagnosed a specific ailment and look for specific genes that would make one cure more
effective than another (this has become normal practice in some form of cancer cure)

Based on http://sites.ieee.org/futuredirections/2017/12/26/did-you-get-your-genome-sequenced-for-christmas/


https://dantelabs.com/products/

Example of genetic testing in clinical practise

* BRCA genes testing for PARP inhibitor treatment
BRACAnalysis CDx® Ovarian Cancer

Overview

Mutations in BRCAT or BRCAZ cause Hereditary Breast and Ovarian Syndrome (HBOC). Now mutations in
the BRCAT and BRCAZ genes provide an indication for treatment with Lynparza™ (claparib) for patients
with ovarian cancer. Specifically, BRACAnalysis CDx® is the only FDA-approved laboratory developed test
approved to be used to inform treatment decisions for the PARP inhibitor, Lynparza. A positive
BRACAnNalysis CDx result in patients with ovarian cancer is also associated with enhanced progression-

free survival (PFS) from Zejula™ (niraparib) maintenance therapy. 23

Learn More Order BRACAnalysis CDx

o i

* More info: https://www.youtube.com/watch?v=ilwMGRH276M



A. Functioning PARP enzyme

PARP inhibitors

Single-Strand DNA Break =~ s DNA Repair
BER = base excision repair =

B. PARP enzyme inhibited

In December 2014, the drug olaparib (Lynparza)
became the first of a new class of treatments
known as PARP (poly(ADP-ribosa)polymerase) Single-Strand DNA Break
inhibitors to be licensed for clinical use,
heralding in a new era for personalised, targeted

PARP inhibitor

No DMA Repair

Collapsed replication fork

Double-Strand DMA Break

treatment—and turning the promise of ‘synthetic i
lethality’ into reality. BRCA deficiency l
H. A
Synthetic lethality concept e
Gene A m % Uses sister chromatid as template No template
G2/, after DNA replication DMA trimmed and ligated
High fidelity, error-free Error-prone
BRCAL and BRCAZ dependent Leads to genetic instability
vmhle via ble C. Deficiency in HR and BER together lead to synthetic lethality
o % m-mm
Normal cells Viable
BRCA deficient - + Viable
viable lethal — .
Normal cells, PARP inhibitor + - Viable
More info on PARPI: BRCA deficient, PARP inhibitor - - Cell Death

https://www.youtube.com/watch?v=mgW30YyaJz4 https://doi.org/10.1016/j.ygyno.2015.02.017



The Present and Future of Genome Sequencing

Genomics England - 100,000 pa-  {i{ BRI [0 RY S0 {H 1LY S

tients with rare diseases, their
families, and cancer patients

Precision Medicine Initiative (PMI)
1-million-volunteer health
study, data including genetics
and lifestyle factors

GenomeAsia 100K - genomic data
fOr ASian pOpUIatiOnS https://labiotech.eu/features/genome-sequencing-review-projects/

... a many more initiatives

How to handle such huge amount of data and the ethical implications?

In the US, the Genetic Information Nondiscrimination Act (2008) but most-
ly no act in other countries and somewhat grey legal position in Europe






COSMIC: Cataloque of Somatic Mutations in Cancer

L)

, 4T
% COS M I C https://cancer.sanger.ac.uk/cosmic/ I'QIII}N

Catalegue Of Sematic Mutations In Cancer

e v] o )

es. Please check the page for detail

COSMIC v94, released 28-MAY-21 COSMIC News W Follon @cosmic_sanger

COSMIC, the Catalogue Of Somatic Mutations In Cancer, is the world's largest and most comprehensive resource for Digging for rare finds - three breast cancer publications to keep a watch for in V95

exploring the impact of somatic mutations in human cancer.
COSMIC w35 will have a focus on rare female cancers, including rare breast cancers. Our latest blog takes a closer look

Start using COSMIC by searching for a gene, cancer type, mutation, etc. below. at three of these. Moare...

BRCA-UK, Carnpbe SEARCH

Projecfs Lean about the curation process, background to Actionability, and innovative uses of COSMIC data in our interview with
Steve Jupe. More...

Curating the future of precision encolegy: An interview with Steve Jupe

COSMIC is divided into several distinct projects, each presenting a separate dataset or view of our data:

COSMIC
The core of COSMIC, an expert-curated database of somatic mutations

Cell Lines Project ) . COSMIC Release v94 is live!
Mutation profiles of over 1,000 cell lines used in cancer research

a focus on rare lung cancers and rare pancreatic cancers, and curation of somatic mutations in 12 hallmark apoptosis
COSMIC-2D genes. Along with this, 9 cancer hallmark genes data are also updated. Find out more before exploring the v94 release.
An interactive view of cancer mutations in the context of 3D structures More...

Cancer Gene Census
A catalogue of genes with mutations that are causally implicated in cancer

Cancer Mutation Census Tools
Classification of genetic variants driving cancer

@ Cancer Browser — browse COSMIC data by tissue type and histology
Actionability

Mutations actionable in precision oncology 4 Genome Browser — browse the human genome with COSMIC annotations

P GA4GH Beacon — access COSMIC data through the GA4GH Beacon Proje_ctl:?

@ COSMIC in BigQuery @ — search COSMIC via the ISE Cancer Genomics Cloud &
. A

‘ https://www.youtube.com/watch?v=2FD5RabgK60, https://www.youtube.com/watch?v=k477uAiKx74

OPPOO®

Data curation



https://www.youtube.com/watch?v=2FD5RabgK6o

TCGA: The Cancer Genome Atlas

) NATIONAL CANCER INSTITUTE

1-800-4-CANCER Live Chat Publications Dictionary

ABOUT CANCER CANCER TYPES RESEARCH GRANTS & TRAINING NEWS & EVENTS ABOUT NCI search Q

Home > About NCIl > NCI Organization > CCG > Research > Structural Genomics ‘: f , (p
TCGA The Cancer Genome Atlas Program
Program History + The Cancer Genome Atlas (TCGA), a landmark cancer genomics program, molecularly characterized over
20,000 primary cancer and matched normal samples spanning 33 cancer types. This joint effort between the
TCGA Cancers Selected for . . . ) . -
Study National Cancer Institute and the National Human Genome Research Institute began in 2006, bringing

- together researchers from diverse disciplines and multiple institutions.
Publications by TCGA

Using TCGA + Over the next dozen years, TCGA generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and
Contact proteomic data. The data, which has already lead to improvements in our ability to diagnose, treat, and prevent
cancer, will remain publicly available for anyone in the research community to use.

°
Patterns
c} [

Processes .
Pathways

TCGA Outcomes & Impact TCGA's PanCancer Atlas

TCGA has changed our understanding of cancer, A collection of cross-cancer analyses delving into
how research is conducted, how the disease is overarching themes on cancer, including cell-of-
treated in the clinic, and more. origin patterns, oncogenic processes and

signaling pathways. Published in 2018 at the

https://www.

youtube.com/

watch?time _c

ontinue=249

&v=epsZjl Al
va

https://cancergenome.nih.gov/



NATIONAL CANCER INSTITUTE
THE CANCER GENOME ATLAS

T C G A : OV e r V i eW N LJME:E RS

IHI
HLJR YPE

Initiated in 2005 -

A joint effort of the National Cancer Institute (NCI) 212 OOO M 11 000

and the National Human Genome Research
Institute (NHGRI).

27 participating Institutes in US and Canada.

FoW  MOLECULAR

The overarching goal of TCGA is to improve our D |

ability to diagnose, treat and prevent cancer, o

through the application of genome analysis |

technologies, including large-scale genome ‘;ff::
sequencing.
The Cancer Genome Atlas Network have published k!z 20 8
more than 20 papers since the project began %ﬁ%% 5

(https://tcga-data.nci.nih.gov/docs/publications/)

nol @ single disease, but a Gisease composad
fctn et EpliBar v Www.cancer.gov/ccg




TCGA Data Portal https://portal.gdc.cancer.gov/
=

E‘E‘g"ﬁ;;ig”;;?é:?"um VS [T Projects 48 Exploration &+ Analysis £ Repository Q Quick Search  Manage Sets ) Login ™= Cart [} it GDC Apps

Cases by Major Primary Site
i | ' ' '

Harmonized Cancer Datasets

Genomic Data Commons Data Portal

Get Started by Exploring:

&I Projects %% Exploration 4= | Analysis = | Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary pata Release 31.0 - October 29, 2021

PROJECTS PRIMARY SITES CASES

70 o 67 & 85415

FILES GENES MUTATIONS

(649 152 & 23 621 4 3599 319

GDC Applications

The GDC Data Portal is a robust data-driven platform that allows cancer
researchers and bioinformaticians to search and download cancer data for analysis. The GDC applications include:




TCGA: A Valuable Resource for Research Community

TCGA Data Types

> o o000 000
* Clinical data 10000 | # publications

e DNA Sequencing (TCGA research network)

* MIRNA sequencing .
 Protein expression

 MRNA sequencing

» Total RNA sequencing i =

n
=
Q
5|
o
» Array-based expression =
* DNA methylation
« Copy number variations . I
J. =z m B
ee] (o)) o -— (84Y] 4p < 9]
- o = y oy -~ — — — —
+ Computational tools & & & & & & & & . .c0

How to use TCGA: https://www.youtube.com/playlist?list=PL-hYJ1lisbXhURdasc-RmwDRLhrHzdzKtN



Transcriptomics

» Study of transcriptome, the
sum of all RNA transcripts

 Two most widely studies
types of RNA

Type of RNA molecules

[RNAJ

« mMRNA - transcriptome or [

mRNA
Protein-coding RNA

e

} [Non-coding RNA. Transcribed RNA with a structural,

functional or catalytic role

the expressed genes.
Usually contains genes

with poly A tail.

 MiRNA - Small non-coding
RNA (containing about 21-

Ribosomal RNA
Participate in
protein synthesis

Transfer RNA
nterface betwee
mMRNA &
amino acids

snoRNA

Small nucleolar
RNA

snRNA

Small nuclear

RNAI
RNA interference
Small non-coding
RNA involved

in regulation
of expression

Other
Including large RNA

RNA

Incl. RNA that
form part of the
\spliceosome

with roles in
chromotin structure
and imprinting

Found in nucleolus,
involved in
modification

of IRNA

25 nucleotides), important
in gene regulation.

» Array-based Expression Profiling:

miRNA

MicroRNA
Small RNA involved
in regulation
of expression

e https://www.youtube.com/watch?v=6ZzFIhESjp0

siRNA
Small interfering RNA
Active molecules in
RNA interference



https://www.youtube.com/watch?v=6ZzFihESjp0

Microarrays vs RNA-seq

DNA MICROARRAY RNA-SEG
cDMA sample 1 cDMA sample 2 cDMA sample 1 cDMA sample 2
i 7 T M AT
AN AR o g TR o g NI e NS
0 0\Fluu::l-rv.‘asu::nant tag W @'
e < ®
= Reference
genome Gene1 Gene 2 Gene 3 Gene 4
Sample 2 . —
- D == e =3
9 Sample 1 @ — = —: _— o
= ==
= =
==
= : Low sensitivity High sensitivity
relative intensity Low dynamic range High dynamic range
= known transcript only
expression levels No alternative splicing information
lower cost

Sequencing Reads
Novel transcripts sequences idenfified =
structural vanation & alternative splicing revealed

unlimited sample comparisons

expression levels
* While methods for analyzing microarray data are fully mature and straightforward, there is no

consensus on which pipelines—or series of computational steps—to use to analyze RNA-seq data

https://www.the-scientist.com/lab-tools/an-array-of-options-35381



Overview of RNA-seg

Samples of interest Isolate RNAs Generate cDNA, fragment,
size select, add linkers

I S
Condition 1 Condition 2 %W\/\/\NVWWAM . .'l ' ,' " - - .- L.
(e.g. tumor) (e.g. normal) Poly(A) tail . l " . .

Map to genome, transcriptome,
and predicted exon junctions

Inton pre-mRNA

"% Exon ¢ T, Unsequenced RNA RNA reads
A | *.__‘.‘7 [Lo—

[ E—— ]
T g oo B —m

Transcript [l \ e e |
== —_— @ —_ _= s T gaeyswm [ B |

Shortreads = f—=——0—— — e LS
Short reads
split by intron

£
Short insert

100s of millions of paired reads
l 10s of billions bases of sequence

Downstream analysis By Malachi Griffith, Jason R. Walker, Nicholas C. Spies, Benjamin J. Ainscough, Obi L. Griffith -
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393, CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=53055894



RNA sequencing downstream analysis

e https://www.youtube.com/watch?v=tIféwYJrwKY (from 13:10)

 More info about microarray vs. RNA-seq at:
https://www.youtube.com/watch?v=2c3t3tDEmsU

 More info RNA seq at:
e https://www.youtube.com/watch?v=MFRkwXqg6v |

e Useful detailed info about anything connected toRNA-seq
e https://www.rna-segblog.com


https://www.youtube.com/watch?v=tlf6wYJrwKY
https://www.youtube.com/watch?v=2c3t3tDEmsU
https://www.youtube.com/watch?v=MFRkwXq6v_I

Examples of transcriptomics data outputs
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Cellular/functional/pathway analysis

Microarray

Cellular/functional/pathway

analysis is a valuable tool to
summarize high-dimensional

Hybridization.
Scanning images,
Quantification.

gene expression data in terms
of biologically relevant sets.

Genes are aggregated into

I Raw intensities

gene sets on the basis of
shared biological or
functional properties as

Preprocessing:

Normalization,
Summarization.

Background correction,

defined by a reference
knowledge base.

Knowledge bases are
database collections of
molecular knowledge which
may include molecular
interactions, regulation,
molecular product(s) and even
phenotype associations.

Useful info in Czech language:
https://portal.matematickabiologie.cz

A 4

RNA-Seq

Sequencing.
Base call.

|

I Short reads |

Aligned to
reference genome,
known isoform & exon-

Expression levels of
Transcripts (continuous)

junction sequences.
Expression levels of

Novel
Transcripts (counts) transcripts

| Statistical analysis

Cellular
functional/pathway
analysis

l‘_\ Statistical analysis |

= v _.:-.'~ _-—‘-: Wt
expressed
transcripts

Usually hundreds to
thousands of genes




Database resources for understanding high-level
functions and utilities of the biological system

e Database tools:

 KEGG (Kyoto
Encyclopedia of
Genes and
Genomes)

e (https://www.geno
me.jp/kegg/)

e Disadvantage —
does not provide
statistical
significance of
particular pathways

e And many others
available online
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https://www.genome.jp/kegg/

Gene-set analysis (GSA)/Pathway analysis

//=
Ontology Gene Ontology (GO) analysis (http://geneontology.org/) o w f

GEP{EE?I‘;IJELFJGY About Annotations Downloads Help ° ALLIANC

Current release 2021-10-26: 43 332 GO terms | 7 827 476 annotations
1 542 582 gene products | 5 086 species (see statisti

THE GENE ONTOLOGY RESOURCE

The mission of the GO Consortium is to develop a comprehensive, computational model of biological

GO Enrichment Analysis @
Powered by PANTHER
systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life.

The Gene Ontology (GO) knowledgebase is the world’'s largest source of information on the functions of genes.

This knowledge is both human-readable and machine-readable, and is a foundation for computational analysis of
large-scale molecular biology and genetics experiments in biomedical research.

G -

© Any ® Ontology ® Gene Product

biclogical process

Homo sapiens Examples Launch »

Hint: can use UniProf IDFAC, Gene Name, Gene Symbaols, MOD 1Ds

- . ligase activity

— GOO0D4842

é N\ -
OLS & GUIDES
¥y &

<3 ONTOLOGY

The network of biological classes describing
the current best representation of the
“universe” of biology: the molecular functions,
cellular locations, and processes gene
products may carry out.

Statements, based on specific, traceable
scientific evidence, asserting that a specific
gene product is a real exemplar of a particular
GO class.

GO Causal Activity Model (GO-CAM) provides
a structured framework to link standard GO
annotations into a more complete model of a
biological system.

Tools to curate, browse, search, visualize and
download both the ontology and annotations.
Includes bioinformatic guides (Notebooks) and
simple APl access to integrate the GO into
your research.


http://geneontology.org/

Example data of GO enrichment analysis

GO analysis

« GO enrichment analysis

e One of the main uses of the GO is to
perform enrichment analysis on lgene
sets. For example, given'a set o
genes that are up-regulated under
certain conditions, an enrichment
analysis will find which GO terms are
over-represented (or under-
represented) using annotations for
that gene set.

lex

SeMet H.Se
protein localization to vacuole
establishment of protein localization to vacuole
protein targeting to vacuole

« 3 main GO aspects (molecular
function, biological process, cellular
component)

e http://geneontoloqgy.org/docs/go-
enrichment-analysis/



http://geneontology.org/docs/go-enrichment-analysis/

Reactome Knowledgebase

Q Why Reactome ~ B Tweets

Reactome is a free, open-source, curated and peer-reviewed pathway database. TR
Our goal is to provide intuitive bioinformatics tools for the visualization, @reactome
interpretation and analysis of pathway knowledge to support basic research, An interesting publication just out using Reactome

genome analysis, modeling, systems biology and education. analysis tools & textbook-style illustrations

* More info at:

If you use Reactome in Asia, we suggest using our Chinese mirror site at

= - e https://www.

EMBL-EBI . NYULangoee

reactome
The development of Reactome is supported by grants from the US Mational Institutes of Health (U41 {@reactome [ ]

HGOO3751) and the European Molecular Biology Labaratory. e - "
: urResn [lteaiiar Siory ey Introducing "Success Story of the Month"! Have you had

some success with your experiment, tool or resource by / / R
using Reactome? Submit your success story, u S e r e a Cto
me/videos

B | atest News more details:

Version 78 released on October 13, 2021

P s = [+ &

2,546 13,890 10,720 1,940 507 34,025

Human Pathways Reactions Proteins small Molecules Drugs Literature References



GENETIC
AND EPIGENETIC

Metabolomics

Metabolomics — large-scale systematic environment (| 57
study of the metabolome
DISEASES

Metabolome - total complement of
metabolites present in a biological sample
under given genetic, nutritional or NUTRITION
environmental conditions LIFESTYLE

- the unique biochemical fingerprint of

all cellular processes

https://polypdx.com/for-healthcare-
providers/metabolomics

Metabolite - low molecular (usually 50 —
1,500 Da) weight organic compound, Yanscritome. TP
typically involved in a biological process
as a substrate or product.

—
—
L 3

|

]

Metabolomics yield many insights into basic v l ‘v

biological research in areas such as systems [ G E

) ) ) i etabolome H
biology, metabolic modelling, pharmaceutical - =
“, . . Metabolites
research, nutrition and toxicology

;

Phenotype/Function



Metabolites are important

« >95% of all diagnostic clinical assays test
for small molecules

* 89% of all known drugs are small
molecules

* 50% of all drugs are derived from pre-
existing metabolites

» 30% of identified genetic disorders involve
diseases of small molecule metabolism

Small molecules serve as cofactors and
signaling molecules to 1000’ s of proteins

Metabolomics can therefore be seen
as bridging the gap between
genotype and phenotype

Human Metabolomes (2015)

3670 (T3DB)

Toxins/Env. Chemicals

1240 (DrugBank) D@ms

1550 (DrugBank) -

19700 (HMDB) Endogenous metabolites
| | | | | |
M mM uM nM pM i

Theoretical Human
Metabolomes

100,000 (Lipidome) Lipids/Lipid derivatives

10,000 (Drug metabolome) Secondu_muolites
100,000 (Food metabolome) Seco-lﬂes
10,000 (Secondome) Secondary .- metabolites
T
pM

| 1 1 | |
M mM uM nM fM




Metabolomics technologies

Mass Spectrometry

® U PLC, H PLC Analytical method to measure the

molecular or atomic weight of samples

 CE/microfluidics

« LC-MS

« FT-MS

+ QqQ-MS

* NMR spectroscopy MS Principles

* X-ray crystallography = e by their mass

+ GC-MS st o Ethanol

* FTIR =
@”. HO -CH,CH-NH, CH,CH,OH

HO
HO

MW = 327.1 MW = 197.2 MW = 46.1




Metabolomics —,a snapshot’ in time

Conceptual approaches in metabolomics:

» Target analysis: has been applied for many decades
and includes the determination and quantification of a
small set of known metabolites (targets) using one
particular analytical technique of best performance for
the compounds of interest.

» Metabolite profiling: aims at the analysis of a larger
set of compounds, both identified and unknown with
respect to their chemical nature. This approach has
been applied for many different biological systems
using GC-MS, including plants, microbes, urine, and
plasma samples.

binding
degradation

dissociation

modification

classic biochemical reaction transport

A diagram showing the main different types of metabolic reactions that take place in a
cell. These are shown as theyare represented in the database Reactome.

» Metabolomics: employs complementary analytical methodologies, for example, LC-MS/MS, GC-MS, and/or
NMR, in order to determine and quantify as many metabolites as possible, either identified or unknown

compounds.

» Metabolic fingerprinting: a metabolic “signature” or mass profile of the sample of interest is generated and
then compared in a large sample population to screen for differences between the samples. When signals that
can significantly discriminate between samples are detected, the metabolites are identified and the biological
relevance of that compound can be elucidated, greatly reducing the analysis time.




From Lists to Pathways
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Metabolomics data analysis

From Pathways & Lists to
Models & Biomarkers

METABOLIC PATHWAYS
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Where to look for metabolomics data

Metabolic pathway databases

» Pathway viewers KEGG (http://www.genome.ad.jp/kegqg/ ),

» Atomic Reconstruction of Metabolism database (http://
www.metabolome.jp/),

» BioCyc (http:/ /biocyc.org) (Paleyand Karp 2006),

» MetaCyc (http://metacyc.org/) (Caspiet al. 2006),

» AraCyc (http://www.Arabidopsis.org/tools/ aracyc/) (Zhang
et al. 2005) MapMan (http://gabi.rzpd.
de/prOJects/MapMan/)

» (Thimm et al. 2004), KaPPA-View
(htctjp://kpv.kazusa.or.jp/kappa—view/) (Tokimatsu et al.2005)
an

» BioPathAT (http://www.ibc.wsu.edu/research;/
lange /public%5Ffolder/) (Lange and Ghassemian 2005),

» the data model for plant metabolomics experiments ArMet
(http:/ /www.armet.org/)

https://www.slideshare.net/ TNAUgenomics/metabolomics-13725538?next_slideshow=1



Cutting edge: Single-cell -omics

7 Application of whole genome, whole transcriptome sequencing and other
—omics methods to single cells, scRNA-seq is now the top method
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https://community.10xgenomics.com/t5/10x-Blog/Single-Cell-RNA-Seq-An-Introductory-Overview-and-Tools-for/ba-p/547



ScRNA-seq data visualization
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Common applications of sScCRNA-seq

a) Deconvolving heterogeneous cell
populations

(heterogeneous tissue or tumor)

dirmensionality reduction

{e-g. PCA}
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Component 1 >

b) Trajectory analysis of cell state
transitions

lineage A
lineage B
(cell differentiation, or response to stimulus)
trajectory analysis pipeline

{e.g. Monocle, Wanderlust)

Component 2

B
L

Component 1

https://f1000research.com/articles/5-182/v1

For more info go at: https://omicstools.com

c) Dissecting transcription mechanics

Gene transcription “off"
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{transcriptional bursting and stochastic gene expression)

d) Network inference
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v
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(identifying modules of co-regulated genes)

netwark inference

(inference of gene regulatory networks/subnetworks)



ScRNA-seq databases

https://www.ebi.ac.uk/gxa/sc/home
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Single-cell multi-omics

Challenges:

» There are no commercial kits available yet
for any single-cell multi-omics techniques,
and many are technically challenging.

. » Researchers must modify existing single-
5 cell protocols so that they're compatible
Proteome | with multiple types of molecules and take
- great care to minimize the loss or
contamination of samples

https://www.the-scientist.com/lab-

Genome Epigenome

e O

Transcriptome

Single cell

genomics | CNV  DNA methylation tools/integrating-multiple--omics-in-
' gNP Histone modification RNA expression ; | Protein expression | individual-cells-64829
E Chromatin i RNA structure 5 :
— Difficulty squared
Combliwtion Combining modalities only multiplies the
. difficulty. All the weaknesses, all the
Single cell O o . i noise, all the challenges from each
Multi-omics § § technology, it just gets exacerbated by
Eﬁu;.r;;emau_, 2015{:ME _ samatseq - :;‘?:;ﬂ(;izt;l;m;gl“ CITEseq (Stowckius et o, combining them into a multimodal
EMacaqu etal., 2015 ‘ ‘ ; ” |Pel;;;rj~:oRnE:tp:liq2t}1? ) : a.ssa.y.

Single-cell analysis enters the multiomics age
https://www.nature.com/articles/
d41586-021-01994-w#correction-1

FIGURE 2 | Strategies for multi-omics profiling of single cells. Three major types of molecules relating to biological central dogma (Top). Single cell genomics methods
profiing the genome, epigenome, transcriptome, and proteomne are shown by different shapes with variable colors (Middle). Single cell multi-omics methods are built
by combining different single cell sequencing methods to simultanecusly profile multiple types of molecules of a single cell genome wide (Bottom). For example,
G&T-seq was built by combining genome (orange) and transcriptome (yellow) to simultaneously detect DNA and RNA of the same cell genome wide.

https://www.frontiersin.org/articles/10.3389/fcell.2018.00028/full



Summary

DNA Genomics

 Omics technologies - ,the data deluge*

Transcriptomics
: : : : _ RNA
e (Genomics and Transcrlptomlcs rely on two main approaches.

microarrays (hybridization) and NGS (sequencing by synthesis)  Proteins

Biochemica, Metabolomics

Proteomics

* Proteomics and Metabolomics rely heavily on mass spectrometry

Biological
Phenotype

Omics technologies are revolutionizing
science and medicine

From data to actionable knowledge -
Integrated Omics data

Precision medicine is the ultimate goal
of many —omics efforts

Despite the progress made we have
still a long way to go ...

UNDERSTAND  WHICH ° |JSE CURRENT MEDICINES BETTER
BEST TREATMENT WO

DIFFERENCES ARE IMPORTANT
°NEW DIAGNOSTIC TESTS



Take home messages

* We have been generating Big data, but we hardly understand
it ®
 Big data is publicly available, go through the databases before

you even start planing your experiment — it can save you
enourmous time and money

» Databases contain huge datasets of patients you would never
pe able to gather by yourself, test your hypothesis in silico
pefore the ,wet-lab“ work

e If you cannot find the ,yes/no“ or ,a few genes" answer, use
the Cellular/functional/pathway analyses to help you out ©

 Learning bioinformatics skills (e.g. programing in R) is a good
Investment plan for your future (scientific) career




Thank you for your attention

Any Questions?

* Jay Flatley, Executive Chairman of lllumina:

o ,Everyone is going to get sequenced, it is
gonna be part of their health record and it

2 0 PERSONALIZED

will be used to manage their health care 000 HEDIINE

00 0 CONFERENCE

throughout their lifetime”.
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